ChemBuddy: Implementation & Insight
Implementation Highlight: Real-time Loop (Core Logic)
Using WebSockets, the client sends sensor/image data; the server fuses it and calls the AI for immediate feedback.
// Client: Send multimodal update via WebSocket
async function sendUpdate(text, imageBlob, sensorData) {
let imageBase64 = null;
if (imageBlob) {
imageBase64 = await blobToBase64(imageBlob); // Convert Blob to Base64
}
const messagePayload = {
text: text,
sensorData: sensorData,
image: imageBase64 // Embed Base64 image data (or null)
};
// Send a single JSON message containing all data
socket.send(JSON.stringify({ type: 'chem_update_request', payload: messagePayload }));
}
// Server: Handle WebSocket message
socket.on('message', async (message) => {
try {
// Parse the incoming JSON message
const received = JSON.parse(message.toString());
if (received.type === 'chem_update_request' && received.payload) {
const { text, sensorData, image } = received.payload; // Extract data
let imageBuffer = null;
if (image) {
imageBuffer = Buffer.from(image, 'base64'); // Decode Base64 image if present
}
// --> Call Multimodal AI (Gemini) with combined data
// Note: Pass imageBuffer (binary) or image (base64) based on API needs
const aiResponse = await callGeminiApi({ text, sensorData, imageBuffer });
// Send AI response back to client
socket.send(JSON.stringify({ type: 'ai_response', payload: { text: aiResponse } }));
}
} catch (e) {
// Handle potential errors (e.g., JSON parsing)
console.error("Failed to process message:", e);
}
});
Key Insight/Finding:
Integrating real-time sensor data significantly improved the AI's ability to provide relevant, safety-conscious, and conceptually accurate guidance during experiments. It grounds the conversation in the physical reality of the lab.