
Scratch Copilot Evaluation: Assessing AI-Assisted Creative
Coding for Families

Stefania Druga
Information School, University of Washington

Seattle, Washington, United States
st3f@uw.edu

Nancy Otero
Kitco

San Francisco, California, United States
nancy.otero.o@gmail.com

Figure 1: Examples of code explanation provided by the GPT4 model.

ABSTRACT
How can AI enhance creative coding experiences for families? This
study explores the potential of large language models (LLMs) in
helping families with creative coding using Scratch. Based on our
previous user study involving a prototype AI assistant, we devised
three evaluation scenarios to determine if LLMs could help families
comprehend game code, debug programs, and generate new ideas
for future projects. We utilized 22 Scratch projects for each scenario
and generated responses from LLMs with and without practice
tasks, resulting in 120 creative coding support scenario datasets. In
addition, the authors independently evaluated their precision, ped-
agogical value, and age-appropriate language. Our findings show
that LLMs achieved an overall success rate of more than 80% on the
different tasks and evaluation criteria. This research offers valuable
information on using LLMs for creative family coding and presents
design guidelines for future AI-supported coding applications. Our
evaluation framework, together with our labeled evaluation data,
is publicly available 1.

KEYWORDS
AI Assistant, Children, Families, Creative Coding
1https://github.com/stefania11/ScratchCopilot-Evaluation

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Arxiv, 2023,
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Stefania Druga and Nancy Otero. 2023. Scratch Copilot Evaluation: Assess-
ing AI-Assisted Creative Coding for Families. In Proceedings of (Arxiv).ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Computer Science (CS) education faces a critical bottleneck. The
need for more trained teachers and curriculum designers stifles
progress in this field [46]. Supporting project-based learning for
youth and families, particularly creative coding, could be a potential
solution. Prior work shows that engaging youth and families in
creative coding has been advocated to promote more inclusive and
accessible learning experiences [36]. The limited availability of
support and expertise in computer science education also calls for
innovative technological solutions, similar to Github Copilot, which
show considerable promise [15].

Parents often need more technical knowledge for effective cod-
ing instruction despite their expertise in engaging their children.
In this regard, models have been proposed to complement joint
creative coding between children and parents by providing timely
suggestions, questions, ideas, and tips. It is worth noting, however,
that the introduction of external support can both positively and
negatively impact youth motivation and learning.

Studies have shown that creative coding can significantly en-
hance student motivation and bolster confidence in their knowledge
and technical abilities compared to traditional CS programs (Rit-
tenhouse, C. S. Scholarship, Research, and Creative Work at Bryn
Mawr College). Furthermore, creative coding might allow students
to develop a more immersive and experiential relationship with

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Arxiv, 2023, Druga et al.

digital processes, providing them with hands-on experiences and
theoretical frameworks [10].

Young people have lauded experiences that enable them to ex-
press their ideas, foster relationships, assist others, and discover
new perspectives about themselves. This emphasis extends beyond
the common focus of coding initiatives on computational think-
ing and problem-solving skills to support social, leadership, and
identity development [37].

Large Language Models (LLMs), such as OpenAI’s Codex and
GPT-3, have demonstrated potential in aiding tasks related to ex-
plaining, ideating, and debugging creative coding projects. However,
their current performance may fall short of fulfilling the unique
needs of middle school families [34]. While these models have
achieved some success in generating novel and meaningful con-
tent, the necessity for human oversight to ensure the quality and
accuracy of the generated content remains [22, 38].

Despite the potential of such tools, several potential disadvan-
tages exist when utilized for family creative coding. For instance,
young learners may need to be more responsive to these tools, im-
pairing their ability to create similar code independently. Other chal-
lenges include formulating their intentions to generate the desired
code and understanding the code produced by AI for subsequent
modification if needed [43]. Moreover, a recent study assessing a
new creative coding integrated development environment (IDE)
revealed students’ concerns about the trade-off between improv-
ing their abilities and facilitating the development of their skills
through IDE syntax templates and autocomplete coding features
[29].

Involving parents as learning partners in the creative process is
paramount. Past research has shown that parents can act as mentors
and co-tinkerers when families engage in game programming [7]
or AI literacies tinkering [8, 24].

Given these findings, our research aims to answer the following
question:

• RQ: How well do large-language models support explaining,
ideating, and debugging Scratch projects for middle school
families?

This paper explores the potential of LLMs in aiding families
interested in learning creative coding together. We focus on the
applicability of LLMs for generating Scratch program explanations,
debugging, and ideation support. Our previous user study identified
these three areas as primary needs for family AI-assisted creative
coding [9].

Our findings reveal that LLMs achieved an overall success rate
of over 80% across the various tasks and evaluation criteria. This
study further contributes a public dataset of Scratch programs,
complemented by the code explanations, debugging, and ideation
support tasks we employed for the LLM evaluation.

Based on these findings, we discuss potential scenarios for de-
signing inclusive LLM support for family creative coding. More-
over, we propose a series of design guidelines that could inform
the development of future AI-supported coding applications. This
exploration thereby provides insights into the effectiveness and
potential of LLMs as supportive tools for families engaged in cre-
ative coding, offering a promising avenue for inclusive and ac-
cessible computer science education. Our evaluation framework,

together with our labeled evaluation data, is publicly available here:
github.com/stefania11/ScratchCopilot-Evaluation.

2 RELATEDWORK
2.1 LLMs in Computing Education
Large language models (LLMs) have demonstrated potential in nu-
merous fields, especially education and programming. In addition,
the influence of LLMs on novice learners, particularly in introduc-
tory programming environments, has garnered scholarly interest.

Kazemitabaar et al. studied the effects of OpenAI Codex on mid-
dle school learners within a self-paced learning setting. Their find-
ings suggest that Codex significantly enhanced code-authoring per-
formance without negatively impacting manual code-modification
tasks [19]. However, it was observed that performance differences in
post-tests conducted a week later were not statistically significant,
underscoring the necessity of further research.

Leinonen et al. explored the use of LLMs in generating code
explanations, comparing GPT-3-generated explanations with those
created by students in an introductory programming course. Their
findings highlighted that LLM-generated explanations were per-
ceived as significantly easier to comprehend and more accurate
than those produced by the students [22].

Turning to debugging tasks, Chen et al. introduced the concept
of Self-Debugging, which trains LLMs to debug their predicted pro-
grams using few-shot demonstrations. Their study established that
Self-Debugging surpassed performance standards on code gener-
ation benchmarks, improving the baseline accuracy by up to 12%
and demonstrating notable sample efficiency [5]. Similarly, Madaan
et al. examined LLMs’ capacity to suggest performance-improving
code edits, establishing that tools like CODEGEN and CODEX could
generate such edits for C++ and Python programs [25].

The potential of LLMs extends to computer science education,
where AI code generators can offer substantial support to learners
and educators alike. For example, they can automatically rectify
semantic bugs and syntax errors, allowing learners to concentrate
more on theoretical and problem-solving aspects of computational
thinking. Additionally, these tools can assist educators in develop-
ing curriculum by creating programmatic exercises and explaining
solutions [38].

Guo’s study offers further insight, introducing an interactive
web-based tool, the online Python Tutor, which aids students in
understanding Python programming through visualization of code
execution [14]. This supports novice learners in comprehending
complex computer programming concepts and is an effective de-
bugging aid.

In the realm of creative coding, it has been observed that media
arts-related coding education attracts a diverse range of students
who might not otherwise engage with CS in a formal setting [13, 26,
45]. Studies such as those by Sáez-López 2016, MacNeil 2022, and
Sarsa 2022 indicate the potential of LLMs in this sphere, particularly
for middle school families [38]. Furthermore, they demonstrate that
LLMs, like GPT-3 and OpenAI Codex, can generate helpful code
explanations and programming exercises, providing potential value
in creative coding projects.



Scratch Copilot Evaluation: Assessing AI-Assisted Creative Coding for Families Arxiv, 2023,

The current work highlights the potential of Large Language
Models (LLMs) in various aspects of coding education, including en-
hancing code-authoring performance, generating understandable
code explanations, and assisting in debugging tasks. Moreover, the
promising role of AI code generators and AI-enhanced visualization
tools in supporting learners and educators in computer science edu-
cation has been underscored. However, despite these advancements,
a gap persists in understanding LLMs’ effectiveness and potential
limitations, particularly concerning youth and families engaged in
creative coding.

This study seeks to fill this gap by investigating the utility of
LLMs in the context of middle school families engaging in creative
coding. We focus on the potential of LLMs for generating Scratch
program explanations, debugging, and ideation support. In doing
so, we aim to contribute to the growing body of research on using
LLMs in coding education and provide valuable insights into their
utility for this demographic.

2.2 Family Creative Coding
Creative coding, distinct from traditional Computer Science (CS)
education, often adopts a bricolage approach [28]. This concept,
introduced in the programming context by Turkle and Papert [42],
paints the coder as a bricoleur, akin to a painter contemplating their
canvas between brushstrokes. This approach casts programming as
a collaborative venturewith themachine, a conversation rather than
a monologue, wherein mistakes are not missteps but opportunities
for navigation and mid-course corrections.

However, it is crucial to note that the benefits of creative cod-
ing extend beyond motivation; they also challenge the assumption
that creative coding inherently develops computational thinking
and problem-solving skills. For example, a recent study found that
novice students often need help using optimal strategies to cre-
ate animations, even with explicit instruction [44]. This finding
highlights the importance of pedagogical approaches in promoting
computational thinking in the context of creative coding.

A growing body of research supports the idea that collabora-
tive creative coding, mainly when supported by AI, can effectively
engage both children and parents in learning and creating with
technology. Prior studies have detailed successful programs where
families participate in creative coding workshops, sparking interest
and activity in computing among parents and children alike [4, 36].

For instance, Druga et al. delved into how parents can aid their
children in developing AI literacies through learning activities,
emphasizing the benefits of parent-child partnerships [8]. Another
study by Zhang et al. introduced StoryBuddy, an AI-enabled system
designed for parents and children to create interactive storytelling
experiences. This system caters to dynamic user needs and supports
various assessment and educational goals [48].

In summary, collaborative creative coding, bolstered by AI, can
be a significant avenue to involve children and parents in learning
and technological creation. The existing literature provides dif-
ferent approaches to designing and implementing such programs,
informing our current study. Our research extends this work by
focusing on the potential of Large Language Models (LLMs) to sup-
port such collaborative creative coding experiences, particularly
for middle school families. This emphasis on LLMs in the family

creative coding context adds a new dimension to the existing dis-
course, potentially expanding and enhancing these collaborative
learning experiences.

2.3 Culturally-Responsive Computing
Education

The advent of large language models (LLMs), capable of human-
like language generation, has ushered in a new era of technological
interaction, which can shape user behavior and opinions. Jakesch
[16] suggests that when LLMs express certain viewpoints more
frequently than others, they may inadvertently influence user per-
spectives. The potential bias in LLMs is further substantiated by
studies such as those by Gaci [12] and Nadeem [32], which re-
port that pre-trained LLMs often reflect and perpetuate societal
stereotypes and biases.

Addressing this concern, several studies have proposed mea-
sures to mitigate social biases in LLMs. For instance, Liang et al.
[? ] introduced new benchmarks and metrics for identifying and
reducing these biases. In contrast, Mattern et al. [27] proposed a
robust framework for quantifying biases exhibited by LLMs. Thus,
it becomes crucial to confront and alleviate these biases, especially
within the context of computing education.

Culturally Responsive Computing Education (CRC) is an evolv-
ing field emphasizing integrating students’ identities and expe-
riences into learning. This approach, as championed by Solyst
[40] and Morales-Chicas [31], is recognized as key to fostering
equity and justice in K-12 education. Moreover, Solyst et al. un-
derline the challenges in fostering a sense of connectedness in
online CRC programs and propose strategies to address them [40].
Araujo [3] further advocates for an intercultural approach, promot-
ing relationship-building across differences.

The importance of culturally-responsive approaches is also un-
derscored in the context of AI education for K-12 students [11].
These approaches include personalizing the learning experience,
promoting AI ethics understanding among middle school students,
and using cultural artifacts to reinforce computing concepts [2].
Moreover, the role of collaborative engagement between schools
and communities in fostering equity-oriented CS education is high-
lighted [21].

In summary, the research underscores the significance of culturally-
responsive approaches in computing and AI education and the ne-
cessity to address and mitigate the potential biases in LLMs. This
current study aims to extend this discourse by exploring the po-
tential of LLMs in a culturally-responsive, family-based creative
coding context. Furthermore, we aim to contribute to the ongoing
discussion on how to best leverage these advanced tools in a way
that respects and integrates diverse cultural perspectives, ultimately
promoting an inclusive and effective computing education.

3 METHOD
3.1 Development and Analysis of Scratch

Projects
In our study, we curated a collection of 22 Scratch projects (see
examples in Figure 2). These projects were selected by referencing
popular Scratch community projects and salient examples from



Arxiv, 2023, Druga et al.

a previous study that analyzed 250,000 projects from the Scratch
public repository [1]. These projects primarily aimed to evaluate
the capabilities of a language learning model (LLM) in supporting
code explanation, code debugging, and code ideation. In addition,
these three tasks were identified as critical areas of focus based on
findings from our previous user study on AI assistants for family
creative coding.

We utilized the 22 Scratch projects as inputs for an LLM (GPT4),
generating responses with and without practice tasks. This resulted
in a pool of 120 creative coding support scenarios. These scenarios
were evaluated independently by the first two authors, focusing
on precision, pedagogical value, and age-appropriate language. In
cases where the two authors disagreed on the evaluation, they en-
gaged in a discussion until a consensus was reached. Our evaluation
framework, together with our labeled evaluation data, is publicly
available 2.

3.2 Leveraging OpenAI’s GPT4 Model
OpenAI’s GPT-4, much like its predecessor GPT-3, can be interacted
with through an API or a web interface. Users provide GPT-4 with a
prompt, which the model uses as a foundation to generate content
in alignment with the input. For example, upon receiving a natural
language description of desired functionality, GPT-4 often generates
corresponding source code.

We can guide the model’s content generation by specifying a
“stop sequence” to halt generation upon reaching a particular se-
quence. Our study also employed options such as maximum token
count for controlling the content length and “temperature” for in-
fluencing the model’s level of creativity or randomness. Lower tem-
perature values decrease randomness by reducing the likelihood of
generating less probable tokens. However, the model remains non-
deterministic regardless of temperature, with variations in content
across different runs, especially at higher temperature values.

After conducting several experiments, we settled on the follow-
ing model parameters for our final evaluation: a temperature of
0.7, a maximum token count of 1024, and a maximum penalty P of
1. These parameters yielded the best results during our prompts
testing.

The provided prompt significantly influences the generated con-
tent of GPT-4. Therefore, we prompted the model with an existing
Scratch program and context-specific natural language instructions
to guide GPT-4 in explaining, debugging, or ideating Scratch pro-
grams. For example, our prompts would reference the Scratch input
program, ask the model to explain it to a middle school child, and
evaluate its answer:

“You are an expert in creative coding for kids in middle
school. Explain the following Scratch project {scratch_code}
in an accessible and fun way. Provide first a global
overview of the project.
Rate your global response and show a score for how
kid-ready your response was.” (prompt used for code
explanation task without practice)

The complete list of prompts for creating our evaluation dataset is
in the appendix.

2https://github.com/stefania11/ScratchCopilot-Evaluation

4 EVALUATION
In the following section, we present the main findings of our LLM
evaluation organized in the following creative-coding support sce-
narios: code explanation, debugging support, and ideation support.

4.1 Code Explanation Evaluation
When evaluating the code explanations, we studied whether all
parts of the code were explained and whether each line was cor-
rectly explained. Of the 40 code explanations, 90% explained all
parts of the code (see Table 1).

The LLM generated explanations to help middle schoolers under-
stand their Scratch projects. In addition, TheLLMassistant provided
engaging, age-appropriate explanations that were easy to under-
stand, making the Scratch projects more enjoyable for the young
coders. For instance, in the example illustrated in Figure 1, the LLM
explained the project as “a thrilling game of tag between the two
sprites,” making it relatable and exciting for the students.

The LLM successfully explained the Scratch code in various
projects, breaking down each block’s steps and purpose in a way
middle schoolers could comprehend. In other instances, the LLM
explained a game where the character collects coins and avoids
obstacles, detailing the code’s structure and the logic behind each
section. This helped students grasp the concepts more effectively.

Although the LLM provided accurate explanations, the tone of
language was sometimes overly enthusiastic, using phrases like
“Hey there, Star coder” or “Super coder, let’s look at this program.”

In several instances, the model explained more complex games
where users collect coins and avoid obstacles to increase their scores.
The model broke down each section of the code, explaining the start
of the game, the continuous loop, the conditions when the sprite
touches a coin or an obstacle, and the game’s conclusion when the
score exceeds 100. It provides a systematic and detailed breakdown,
clearly understanding each function.

In other examples, the LLM created appropriate metaphors for
explaining more complex computational concepts such as variables
or loops. For example, in one instance where the sprite’s size was
changing continuously, the model likened the sprite to a balloon
that inflates and deflates, making the code’s dynamics easier to un-
derstand. It explains how the sprite grows until it reaches a specific
size, then starts to shrink, creating a continuous cycle. The model’s
imaginative and engaging language makes the code’s purpose clear
and appealing, encouraging students to explore further.

Overall, the LLM demonstrated its ability to support middle
schoolers in understanding their Scratch projects through engaging,
informative explanations.

4.2 Code Debugging Evaluation
When evaluating the code debugging, we studied whether GPT4
could identify the correct bug and provide adequate support. Of the
40 code debugging examples, 80% correctly identified the introduced
bugs.

The LLM showed promise in aiding middle schoolers to debug
their Scratch projects. However, although the LLM correctly identi-
fied bugs 80% of the time, it occasionally suggested creating vari-
ables when the actual issue was related to conditionals. These



Scratch Copilot Evaluation: Assessing AI-Assisted Creative Coding for Families Arxiv, 2023,

Figure 2: Examples of input Scratch programs provided as input to the LLM:1.Asking player age, 2. Asking the player to guess a
favorite color, 3. Game for avoiding bombs

Coding Task Correct
suggestions Notes

Explain code 100%
No errors, but the tone of language was overly enthusiastic
at times (i.e., “Hey there, Star coder,” “Super coder let’s look
at this program”)

Explain code
with learning 100% More line by line explanations in this mode.

Debug code 80%
The model would find bugs even in correct
programs, in two examples, it suggests creating
variables instead of finding conditionals errors

Debug code
with learning 90% Did not detect “set score” instead of “change score”

and play concurrent sounds bugs

Code ideas 100%
When the initial program was generic, it would
suggest similar suggestions such as adding counters,
timers, levels, multimodality

Code ideas
with learning 100%

Whenever the initial program had something more specific
(i.e., reference to favorite color) the model would develop
that in creative ways otherwise, it would default to suggesting
common game mechanics prevalent in existing scratch projects

Table 1: summary of model evaluation

debugging errors were primarily due to the lack of context for the
Scratch project input, as the model did not have access to prior
code explorations or code edits from the same project.

A noteworthy example of the debugging support proposed by the
model involved the model using an interesting superhero analogy
to elucidate the necessity of a “forever” loop in a student’s code,
thereby enhancing the functionality of the project (see Figure3).

In another scenario, the LLM identified that a student had not
created a “lives” variable, confusing their project. The model guided
the student through creating this variable, thus resolving the prob-
lem and making the project work as intended. However, the model
did have some shortcomings; for instance, it failed to detect bugs,
such as using “set score” instead of “change score” and suggested
adding a “play sound” block rather than addressing the actual issue.

In the provided examples, the LLM generated interactive quizzes
and practical tips as part of its pedagogical approach to facilitat-
ing debugging in Scratch projects. The quizzes were structured to

summarize the project and then ask targeted questions about the
intended behavior and the potential bug in the code. This approach
emphasizes the comprehension of the code and encourages the
learners to think critically about potential issues. For instance, in
the first example, the LLM introduced a quiz highlighting the need
for a loop to continuously check the space key press event (see
Figure3).

Furthermore, the model provided tips after each interactive quiz
session, offering advice on improving coding skills and debugging
more effectively. These tips ranged from technical guidance, such as
adding necessary loops or paying attention to missing elements in
the code, to fostering a positive learning mindset, such as encourag-
ing experimentation and maintaining a fun approach to coding. For
example, in the second example, the model advised learners to pro-
vide clear instructions, experiment with different code blocks, and
use simple language and engaging analogies. Combined with the



Arxiv, 2023, Druga et al.

Figure 3: Examples of debugging code support provided by the model.

quizzes, these insights establish an effective learning environment
that fosters understanding and creativity in the coding process.

4.3 Code Ideation Evaluation
We studied whether LLMs could suggest relevant ideas for Scratch
projects when evaluating the code ideations. All the suggestions
made by the model were correct and written in kid-friendly lan-
guage.

The LLM model suggested various ways to enhance Scratch
projects for middle schoolers, focusing on interactivity, challenges,
and visual appeal. In one example, the model proposed adding a
sprite that follows the mouse pointer, introducing a timer for a
time-based challenge, and altering the sprite’s costume to increase
visual appeal. Additionally, the model recommended incorporating
levels with increasing difficulty and sound effects and music to
create a more engaging and entertaining experience.

Another example showcased the AI’s ability to offer creative
suggestions for code modification, such as changing the sprite’s
appearance and color with each loop iteration, creating a visually
pleasing effect. The model also suggested incorporating user in-
put to control the number of loop repetitions, making the project
more interactive (see Figure 4). Furthermore, the LLM proposed
transforming the project into a game by adding collectible objects,
a scoring system, and advancing levels with increasing difficulty.

In other instances, the LLM model focused on making the game
more engaging and educational by adding hints based on color
guesses. For instance, if a child guesses red, the hint informs them
that their favorite color is of a cooler tone than red. This approach
makes the game more engaging and promotes learning through
feedback. The model also recommended adding a timer and as-
sociating sound effects with user actions to enhance the gaming
experience (see Figure 4).

5 DISCUSSION
Our work asked: How well do large-language models support ex-
plaining, ideating, and debugging Scratch projects for middle-school

families? Our study revealed that in the case of simple Scratch
programs, LLMs such as GPT4 can achieve high precision and ac-
curacy when generating code explanations, debugging supports,
and code ideas. Moreover, we found that despite the model being
overly enthusiastic sometimes, the language used in the support
scenarios generated was child appropriate.

Our findings illuminate several implications for applying LLM
models in supporting children’s creative coding. For instance, the
model’s capacity to introduce new ideas and modifications often
assumes a certain level of knowledge among children. Although this
can benefit those with some experience, it may create difficulties
for beginners. Therefore, future models must be designed with
mechanisms to assess a child’s knowledge level and adjust their
support accordingly. Also, these models should be equipped to
identify and rectify any incorrect assumptions about the child’s
knowledge or skill level.

Despite the LLM’s ability to generate suggestions, these were
sometimes off-topic or made assumptions about Scratch’s capabili-
ties that did not align with the child’s project goals. In addition, as in
previous studies [1, 35], the LLM sometimes prompted children to
write complex code, resulting in “code smells” or bad programming
practices. This suggests that future LLMs should aim to restrict
overly complex or off-topic suggestions, thereby providing more
personalized and accurate support.

Our findings also pointed to the need for LLMs to assess a child’s
knowledge level and adjust their support accordingly. For example,
the LLM often introduced new ideas that required a certain level of
understanding, which could be challenging for beginners. Similarly,
it should be able to identify incorrect assumptions about the child’s
knowledge or skill level and rectify them, ensuring the child is not
overwhelmed or misinformed.

Interestingly, the LLM was found to repetitively suggest the
same ideas, limiting the scope for creative thinking. Therefore,
future iterations of LLM models should aim to generate broader
suggestions to encourage diverse creative thoughts. This aligns



Scratch Copilot Evaluation: Assessing AI-Assisted Creative Coding for Families Arxiv, 2023,

Figure 4: Examples of code ideas provided by the model.

with the need for LLMs to stimulate creativity by suggesting non-
conventional or niche project ideas, broadening the child’s exposure
to different concepts and genres.

While the LLM proved helpful in debugging, it sometimes failed
to identify specific bugs, such as the local “change lives” bug. This
highlights the need for more context awareness in the model to
understand the overall goal of the program better. In addition, future
models should be designed to express uncertaintywhen appropriate,
enabling children to consider a broader range of possibilities and
make more informed decisions about their projects.

Finally, regarding communication style, LLM models should bal-
ance their tone to avoid overwhelming young learners with overly
enthusiastic responses. Instead, they should foster an environment
that encourages exploration and learning at the child’s own pace.

In conclusion, our study underscores the potential of LLMs in
enhancing creative coding for children and the need for future itera-
tions to address the highlighted areas of improvement. Our findings
contribute to the growing discourse on using LLMs in coding educa-
tion and align with prior work advocating for culturally-responsive,
family-based creative coding contexts. These insights will inform

the design of future LLMs, ultimately promoting inclusive and ef-
fective computing education.

5.1 Design Guidelines for AI-Enhanced Creative
Coding Tools

Our current and previous research [9] suggests some guidelines
for designing AI-enhanced creative coding tools. The tools should
not answer the learners but guide them through their creative
process. The fact that in our outputs, the LLM gives options and
different suggestions for the youth to evaluate and pick from is a
first step in this direction. The LLM should adapt the output to the
right learning level based on the youth’s age, prior experience, and
reactions to its previous suggestion. The LLM’s diversity of answers
in our study showcases the possibility of reaching different learning
levels, but testing that LLM accurately delivers them is still needed.
The following list enumerates more of our design suggestions:

Promote Agency and Self-expression. To foster creativity and self-
driven learning, LLM tools should stimulate children’s thinking by
posing strategic questions instead of providing direct answers [17].
This support style enhances the Scratch coding experience and
aligns with the learners’ preference for agency and self-expression.



Arxiv, 2023, Druga et al.

Experience Influences Support Needed. LLM support should be
tailored to the coder’s experience level to maximize learning out-
comes. For example, novice coders often require more assistance
with coding game ideas, whereas intermediate coders may benefit
more from ideation and debugging support [17].

Explain the Provenance of Suggestions. LLM tools should provide
transparency about how they generate a suggestion and offer in-
formation about the source of the code example. This prevents
misconceptions and enhances understanding of the AI’s sugges-
tions, which is particularly useful in Scratch projects [47].

Multimodal Debugging Support. LLM tools should offer visual
elements alongside text to clarify complex instructions and aid in
locating specific programming blocks, especially given the visual
nature of creative coding [29]. This approach aligns with previous
research indicating that augmenting text with visuals provides a
more natural coding specification method.

Voice Input as “Third Hand.” Voice input can provide a valuable,
hands-free interaction method with the LLM tool, especially when
children and parents are collaboratively working on their Scratch
project [23, 30, 39]. However, designing this feature for diverse
programmers, including children and parents, requires overcoming
challenges such as recognizing children’s speech or foreign accents
[20].

Live Code Execution Incorporating liveness in the coding platform
allows for auto-execution of code, helping users quickly identify
non-functioning scripts and offering immediate debugging opportu-
nities. This feature aligns with research on the benefits of immediate
feedback in education. It can be especially beneficial in family cre-
ative coding scenarios where multiple users may collaborate on a
single project [14, 18, 41].

Support Diverse Ideas and Projects LLM tools should encourage
various project types, including art projects, story-based experi-
ences, and projects that encourage collaborative mechanics, going
beyond mainstream or competitive games. This aspect aligns with
the broader goal of fostering creativity and diversity in the Scratch
coding environment.

5.2 Future Work
In our future work, we primarily aim to delve deeper into the capa-
bilities of LLM Companions in facilitating joint family engagement
in creative coding. Understanding how LLM can foster shared learn-
ing experiences and promote collaboration among family members
is still an open question. This will necessitate evaluating LLM mod-
els in multi-turn conversation scenarios involving children and
parents, allowing us to comprehend better how LLM can support
diverse family learning contexts. We also plan to evaluate LLM
models on more complex Scratch programs. This will help us cater
to a range of programming competencies and extend the utility
of LLM in creative coding. Additionally, we aim to explore the
potential of LLM models in providing asynchronous support on
multiple projects. Finally, drawing inspiration from research on
novice design [6], we hope to empower young coders to develop bet-
ter programming skills and foster creativity by exploring multiple
ideas before receiving feedback.

5.3 Limitations
While our study has provided valuable insights into the potential
of LLM models in enhancing creative coding for families, it is not
without its limitations. First, the list of input programs we used
for evaluating the LLM model was not exhaustive. The Scratch
projects we used were a representative sample, but they do not
capture the entire range of programs kids create on Scratch. This
vast diversity in creative coding ranges from simple animations
to complex games, and our sample may not fully represent this
spectrum.

Second, our evaluation scenarios focused primarily on code ex-
planation, debugging, and ideation. While these are critical aspects
of creative coding, they do not encompass all possible scenarios
kids might need support. There are other areas, such as program
design, structuring code, or even specific topics like working with
clones and lists in Scratch, where LLM assistance could be bene-
ficial but were not included in our study. Future research should
include broader coding scenarios and challenges to assess better
LLMs’ potential in supporting creative coding for families.

6 CONCLUSION
This study explored the potential of large language models (LLMs)
in enhancing creative coding experiences for families using Scratch.
Building upon our previous user studies on AI-Assisted family cre-
ative coding, we conducted an extensive evaluation to determine
how effectively LLMs could assist in understanding game code,
debugging programs, and generating innovative ideas for future
creative coding projects. Our research involved meticulously ana-
lyzing 120 creative coding support scenarios, incorporating LLMs’
responses with and without practice tasks. In addition, our authors
independently assessed each scenario on critical criteria, such as
accuracy, pedagogical value, and age-appropriate language.

Our findings revealed that LLMs consistently achieved an impres-
sive success rate of over 80% across different tasks and evaluation
criteria, signifying their considerable potential in supporting family-
based creative coding. However, as with any emerging technology,
there are areas for refinement and improvement. Our research
highlighted the need for more context awareness, diversified sug-
gestions, adaptive communication styles, and improved debugging
support in future iterations of LLMs. In conclusion, our research
contributes valuable insights into the potential of LLMs in family
creative coding. It provides a robust foundation for future research
and development in AI-supported coding applications. These find-
ings inform the design of more effective, engaging, and inclusive
tools for creative coding education, paving the way for more fami-
lies to experience the joy and learning opportunities that creative
coding can provide.

REFERENCES
[1] Efthimia Aivaloglou and Felienne Hermans. 2016. How kids code and how we

know: An exploratory study on the Scratch repository. In Proceedings of the 2016
ACM Conference on International Computing Education Research. 53–61.

[2] Ebenezer Anohah and Jarkko Suhonen. 2020. Conceptual Model of Generic Learn-
ing Design to Teach Cultural Artifacts in Computing Education. IGI Global, 279–294.
https://doi.org/10.4018/978-1-7998-0423-9.ch015

[3] Ian Arawjo and Ariam Mogos. 2021. Intercultural Computing Education: Toward
Justice Across Difference. ACM Transactions on Computing Education 21, 4 (oct
25 2021), 1–33. https://doi.org/10.1145/3458037

https://doi.org/10.4018/978-1-7998-0423-9.ch015
https://doi.org/10.1145/3458037


Scratch Copilot Evaluation: Assessing AI-Assisted Creative Coding for Families Arxiv, 2023,

[4] Nina Bresnihan, Glenn Strong, Lorraine Fisher, Richard Millwood, and Áine
Lynch. 2019. OurKidsCode: Facilitating Families to Be Creative with Com-
puting. In Proceedings of the 11th International Conference on Computer Sup-
ported Education. SCITEPRESS - Science and Technology Publications. https:
//doi.org/10.5220/0007729405190530

[5] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. 2023. Teaching
large language models to self-debug. arXiv preprint arXiv:2304.05128 (2023).

[6] Steven P Dow, Alana Glassco, Jonathan Kass, Melissa Schwarz, Daniel L Schwartz,
and Scott R Klemmer. 2010. Parallel prototyping leads to better design results,
more divergence, and increased self-efficacy. ACM Transactions on Computer-
Human Interaction (TOCHI) 17, 4 (2010), 1–24.

[7] Stefania Druga, Thomas Ball, and Amy Ko. 2022. How families design and
program games: a qualitative analysis of a 4-week online in-home study. In
Interaction Design and Children. 237–252.

[8] Stefania Druga, Fee Lia Christoph, and Amy J Ko. 2022. Family as a Third Space
for AI Literacies: How do children and parents learn about AI together?. In CHI
Conference on Human Factors in Computing Systems. ACM. https://doi.org/10.
1145/3491102.3502031

[9] Stefania Druga and Amy J. Ko. 2023. AI Friends: Designing Creative Coding
Assistants for Families. Proceedings TOCE (5 2023). https://arxiv.org/submit/
4898318/view

[10] Tomi Slotte Dufva. 2021. Creative coding as compost (ing). Post-digital, post-
internet art and education: The future is all-over (2021), 269–283.

[11] Amy Eguchi, Hiroyuki Okada, and Yumiko Muto. 2021. Contextualizing AI
Education for K-12 Students to Enhance Their Learning of AI Literacy Through
Culturally Responsive Approaches. KI - Künstliche Intelligenz 35, 2 (6 2021),
153–161. https://doi.org/10.1007/s13218-021-00737-3

[12] Yacine Gaci, Boualem Benatallah, Fabio Casati, and Khalid Benabdeslem. 2022.
Masked Language Models as Stereotype Detectors? https://doi.org/10.48786/
EDBT.2022.26

[13] Ira Greenberg. 2007. Processing: creative coding and computational art. Springer.
[14] Philip J Guo. 2013. Online python tutor: embeddable web-based program visual-

ization for cs education. In Proceeding of the 44th ACM technical symposium on
Computer science education. 579–584.

[15] Saki Imai. 2022. Is GitHub copilot a substitute for human pair-programming? An
empirical study. In Proceedings of the ACM/IEEE 44th International Conference on
Software Engineering: Companion Proceedings. 319–321.

[16] Maurice Jakesch, Advait Bhat, Daniel Buschek, Lior Zalmanson, andMor Naaman.
2023. Co-Writing with Opinionated Language Models Affects Users’ Views. In
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems.
1–15.

[17] Dhanya Jayagopal, Justin Lubin, and Sarah E Chasins. 2022. Exploring the
Learnability of Program Synthesizers by Novice Programmers. In Proceedings
of the 35th Annual ACM Symposium on User Interface Software and Technology.
1–15.

[18] Hyeonsu Kang and Philip J Guo. 2017. Omnicode: A novice-oriented live program-
ming environment with always-on run-time value visualizations. In Proceedings
of the 30th Annual ACM Symposium on User Interface Software and Technology.
737–745.

[19] Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J. Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the effect of AI Code Generators
on Supporting Novice Learners in Introductory Programming. In Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems. ACM. https:
//doi.org/10.1145/3544548.3580919

[20] James Kennedy, Séverin Lemaignan, Caroline Montassier, Pauline Lavalade, Ba-
har Irfan, Fotios Papadopoulos, Emmanuel Senft, and Tony Belpaeme. 2017. Child
speech recognition in human-robot interaction: evaluations and recommenda-
tions. In Proceedings of the 2017 ACM/IEEE international conference on human-robot
interaction. 82–90.

[21] Michael Lachney, Audrey G. Bennett, Ron Eglash, Aman Yadav, and Sukanya
Moudgalya. 2021. Teaching in an open village: a case study on culturally respon-
sive computing in compulsory education. Computer Science Education 31, 4 (feb
2 2021), 462–488. https://doi.org/10.1080/08993408.2021.1874228

[22] Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James Prather,
and Brett A Becker. 2023. Using large language models to enhance programming
error messages. In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1. 563–569.

[23] Phoebe Lin, Jessica Van Brummelen, Galit Lukin, Randi Williams, and Cynthia
Breazeal. 2020. Zhorai: Designing a conversational agent for children to explore
machine learning concepts. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 34. 13381–13388.

[24] Duri Long, Anthony Teachey, and Brian Magerko. 2022. Family Learning Talk
in AI Literacy Learning Activities. In Proceedings of the 2022 CHI Conference on
Human Factors in Computing Systems. 1–20.

[25] Aman Madaan, Alexander Shypula, Uri Alon, Milad Hashemi, Parthasarathy
Ranganathan, Yiming Yang, Graham Neubig, and Amir Yazdanbakhsh. 2023.
Learning performance-improving code edits. arXiv preprint arXiv:2302.07867
(2023).

[26] Mihaela Malita and Ethel Schuster. 2020. From drawing to coding: teaching
programming with processing. Journal of Computing Sciences in Colleges 35, 8
(2020), 245–246.

[27] Justus Mattern, Zhijing Jin, Mrinmaya Sachan, Rada Mihalcea, and Bernhard
Schölkopf. 2022. Understanding Stereotypes in LanguageModels: Towards Robust
Measurement and Zero-Shot Debiasing. (2022). https://doi.org/10.48550/ARXIV.
2212.10678

[28] Alex McLean and Geraint Wiggins. 2012. Computer programming in the creative
arts. Computers and Creativity (2012), 235–252.

[29] Andrew M Mcnutt, Anton Outkine, and Ravi Chugh. 2023. A Study of Editor
Features in a Creative Coding Classroom. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems. 1–15.

[30] Microsoft. 2023. GitHubNext | Hey, GitHub! https://githubnext.com/projects/hey-
github/. (Accessed on 02/15/2023).

[31] Jessica Morales-Chicas, Mauricio Castillo, Ireri Bernal, Paloma Ramos, and Bianca
Guzman. 2019. Computing with Relevance and Purpose: A Review of Cultur-
ally Relevant Education in Computing. International Journal of Multicultural
Education 21, 1 (mar 4 2019), 125–155. https://doi.org/10.18251/ijme.v21i1.1745

[32] Moin Nadeem, Anna Bethke, and Siva Reddy. 2021. StereoSet: Measuring stereo-
typical bias in pretrained language models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers). Associa-
tion for Computational Linguistics. https://doi.org/10.18653/v1/2021.acl-long.416

[33] ]PaulTowards Paul Pu Liang, ChiyuWu, Louis-PhilippeMorency, and R. Salakhut-
dinov. [n. d.]. Towards Understanding and Mitigating Social Biases in Language
Models.

[34] Natasha Pearce, Helen Monks, Narelle Alderman, Lydia Hearn, Sharyn Burns,
Kevin Runions, Jacinta Francis, and Donna Cross. 2022. ‘It’s all about context’:
Building school capacity to implement a whole-school approach to bullying.
International Journal of Bullying Prevention (2022), 1–16.

[35] Gregorio Robles, Jesús Moreno-León, Efthimia Aivaloglou, and Felienne Hermans.
2017. Software clones in scratch projects: On the presence of copy-and-paste in
computational thinking learning. In 2017 IEEE 11th International Workshop on
Software Clones (IWSC). IEEE, 1–7.

[36] Ricarose Roque. 2016. Family creative learning. Makeology: Makerspaces as
learning environments 1 (2016), 47–63.

[37] Ricarose Roque and Natalie Rusk. 2019. Youth perspectives on their development
in a coding community. Information and Learning Sciences (2019).

[38] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic
generation of programming exercises and code explanations using large language
models. In Proceedings of the 2022 ACM Conference on International Computing
Education Research-Volume 1. 27–43.

[39] Serenade. 2023. Serenade | Code with voice. https://serenade.ai/. (Accessed on
02/15/2023).

[40] Jaemarie Solyst, Tara Nkrumah, Angela Stewart, Amanda Buddemeyer, Erin
Walker, and Amy Ogan. 2022. Insights from Virtual Culturally Responsive
Computing Camps. In Proceedings of the 53rd ACM Technical Symposium on
Computer Science Education V. 2. ACM. https://doi.org/10.1145/3478432.3499136

[41] Steven L Tanimoto. 2013. A perspective on the evolution of live programming.
In 2013 1st International Workshop on Live Programming (LIVE). IEEE, 31–34.

[42] Sherry Turkle and Seymour Papert. 1990. Epistemological pluralism: Styles and
voices within the computer culture. Signs: Journal of women in culture and society
16, 1 (1990), 128–157.

[43] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation
vs. experience: Evaluating the usability of code generation tools powered by
large language models. In Chi conference on human factors in computing systems
extended abstracts. 1–7.

[44] Karen Woo and Garry Falloon. 2022. Problem solved, but how? An exploratory
study into students’ problem solving processes in creative coding tasks. Thinking
Skills and Creativity 46 (2022), 101193.

[45] Zoe J Wood, Paul Muhl, and Katelyn Hicks. 2016. Computational art: Introducing
high school students to computing via art. In Proceedings of the 47th ACMTechnical
Symposium on Computing Science Education. 261–266.

[46] Aman Yadav, Sarah Gretter, Susanne Hambrusch, and Phil Sands. 2016. Expanding
computer science education in schools: understanding teacher experiences and
challenges. Computer science education 26, 4 (2016), 235–254.

[47] Weixiang Yan and Yuanchun Li. 2022. WhyGen: explaining ML-powered code
generation by referring to training examples. In Proceedings of the ACM/IEEE
44th International Conference on Software Engineering: Companion Proceedings.
237–241.

[48] Zheng Zhang, Ying Xu, Yanhao Wang, Bingsheng Yao, Daniel Ritchie, Tong-
shuang Wu, Mo Yu, Dakuo Wang, and Toby Jia-Jun Li. 2022. StoryBuddy: A
Human-AI Collaborative Chatbot for Parent-Child Interactive Storytelling with
Flexible Parental Involvement. In CHI Conference on Human Factors in Computing
Systems. ACM. https://doi.org/10.1145/3491102.3517479

https://doi.org/10.5220/0007729405190530
https://doi.org/10.5220/0007729405190530
https://doi.org/10.1145/3491102.3502031
https://doi.org/10.1145/3491102.3502031
https://arxiv.org/submit/4898318/view
https://arxiv.org/submit/4898318/view
https://doi.org/10.1007/s13218-021-00737-3
https://doi.org/10.48786/EDBT.2022.26
https://doi.org/10.48786/EDBT.2022.26
https://doi.org/10.1145/3544548.3580919
https://doi.org/10.1145/3544548.3580919
https://doi.org/10.1080/08993408.2021.1874228
https://doi.org/10.48550/ARXIV.2212.10678
https://doi.org/10.48550/ARXIV.2212.10678
https://githubnext.com/projects/hey-github/
https://githubnext.com/projects/hey-github/
https://doi.org/10.18251/ijme.v21i1.1745
https://doi.org/10.18653/v1/2021.acl-long.416
https://serenade.ai/
https://doi.org/10.1145/3478432.3499136
https://doi.org/10.1145/3491102.3517479

	Abstract
	1 Introduction
	2 Related work
	2.1 LLMs in Computing Education
	2.2 Family Creative Coding
	2.3 Culturally-Responsive Computing Education

	3 Method
	3.1 Development and Analysis of Scratch Projects
	3.2 Leveraging OpenAI's GPT4 Model

	4 Evaluation
	4.1 Code Explanation Evaluation
	4.2 Code Debugging Evaluation
	4.3 Code Ideation Evaluation

	5 Discussion
	5.1 Design Guidelines for AI-Enhanced Creative Coding Tools
	5.2 Future Work
	5.3 Limitations

	6 Conclusion
	References

