
How families design and program games: a qualitative analysis
of a 4-week online in-home study

Stefania Druga
University of Washington
Seattle, Washington, USA

st3f@uw.edu

Thomas Ball
Microsoft Research

Redmond, Washington, USA
tball@microsoft.com

Amy J. Ko
University of Washington
Seattle, Washington, USA

ajko@uw.edu

Figure 1: Overview of TileCode Platform [4] for game programming on web application and a handheld arcade device.

ABSTRACT
Prior work has broadly explored empowering children to learn to
program by making video games. However, such work has rarely
considered the role of families in this learning, leaving many open
questions about how inter-generational collaborations might sup-
port and constrain learning. To investigate these opportunities,
we conducted a family-based study of TileCode, a rule-based pro-
gramming platform for video-game programming, and scaffolded a
4-week series of game programming activities with 19 children (9 to
14 years old) and 16 parents. Using a joint media engagement lens to
analyze family knowledge and programming strategies, we found:
1) families demonstrated many dynamic collaboration patterns
distinct from pair programming and other collaboration models,
2) parents played a unique role in scaffolding and guiding more
complex designs and programming tasks, 3) families found it chal-
lenging to start their games from scratch but benefited greatly from
having programming patterns for particular game behaviors. These
findings suggest the need for game programming platforms to de-
sign around the unique kinds of collaboration in inter-generational
domain-specific programming.

CCS CONCEPTS
•Human-centered computing→ Usability testing; User cen-
tered design; Interface design prototyping; Field studies; Sound-
based input / output; Human computer interaction (HCI); User
studies; • Social and professional topics→ Children.

Conference’17, July 2017, Washington, DC, USA
2022. ACM ISBN 978-1-4503-8452-0/21/06. . . $15.00
https://doi.org/xxxxx

KEYWORDS
Domain Specific Languages, Children, Families, Computational
literacy

ACM Reference Format:
Stefania Druga, Thomas Ball, and Amy J. Ko. 2022. How families design and
program games: a qualitative analysis of a 4-week online in-home study. In
Interaction Design and Children (IDC ’21), June 24–30, 2022, Lisbon, Portugal.
ACM, New York, NY, USA, 16 pages. https://doi.org/xxxxx

1 INTRODUCTION
Youth are spending more time playing computer, and video games,
with 97% of children ages 12-17 playing computer, web, portable, or
console games [55]. This engagement is encouraged by the growth
and evolution of hardware platforms supporting gaming, an in-
crease in the number and types of computer and video games, and
significant growth in the participation in online gaming communi-
ties such as Minecraft, Roblox or Fortnite (141, 120 and 80 million
monthly active players) [87].

Given the pervasive influence of computer and video games on
youth culture [17, 49], many educators, designers and scholars have
taken an interest in how some of the motivating aspects of video
games might be harnessed to facilitate learning [86]. Previous stud-
ies have explored games as narrative and digital literacy practice
spaces [35, 46, 88]; as creative, artistic expression and storytelling
engines [1, 11, 34]; as ways for engaging with cultural and histor-
ical heritage [63] and developing mathematical inquiry [48] and
scientific learning [16, 43]; or as avenues for critical learning [50]
and civic engagement [80].

One promising approach has been to use video games as an av-
enue for teaching children how to program [49]. Platforms such as

https://doi.org/xxxxx
https://doi.org/xxxxx

Conference’17, July 2017, Washington, DC, USA Druga, et al.

Scratch [78], Snap [42], Cognimates [23] and MakeCode [3] provide
children with procedural visual programming languages [14] that
they can use to create games. Prior work underlines the benefits
of designing domain-specific languages (DSLs) for game program-
ming for non-experts, providing programming constructs that are
closer to the natural language youth use to express game mechanics
[70]. Moreover, recent studies show that programming different
game genres (e.g., action, storytelling) can impact childrens’ pro-
gramming styles differently [93].

An early platform for building interactive simulations and games
was Agentsheets [74]. In Agentsheets, the programmer defines the
look and behavior of domain-specific building blocks called agents.
Elementary school students with no programming background
have used AgentSheets to create interactive simulations in a variety
of disciplines, including computer science, environmental design,
fine art, robotics, music, history, and biology [9, 75]. More recent
initiatives propose DSLs for youth game programming; platforms
such as BlockStudio use dedicated game icons, and programming
by demonstration [6], CodeSpells uses functional programming
and a 3D game environment to immerse novices in code through
embodiment [30]. Finally, Gamechangineer uses natural language
processing to generate game templates based on childrens’ text
descriptions [44].

Most prior work on game programming has explored learn-
ing contexts where youth create games alone or in groups in a
formal or informal learning context. For example, studies of Al-
ice in after-school programs have found that when girls engage
in programming game-based stories, as opposed to just engaging
in programming games, their short-term motivation to persist is
greater [51]. Studies of middle school youth creating games with
Scratch and wearables revealed how mixed media intersected with
multiple dimensions of student interest [95]. Numerous studies
have considered these phenomena in the context of pair program-
ming amongst youth (e.g., [56] highlight the intricate role of social
conflict in mediating successful learning).

While this prior work reveals the rich opportunities and trade-
offs of learning through making interactive games, there is a critical
context that it has yet to explore: families. The inter-generational
structure of families is critical to understand for numerous reasons.
Prior work, for example, has found that parents, peers, and care-
givers can play a dynamic role in youth learning, sometimes acting
as facilitators or guides [8] and other times as learners, leading
youth to see themselves as experts [24, 64]. Families can also be
a bridge between formal learning at school and informal student-
driven learning outside of school [66].

Prior work has also demonstrated that parental experience in
technology fields plays a significant role in how they support their
children’s learning [22]. To address this, family-oriented programs
using design-based activities, like Family Creative Learning (FCL)
[81, 82], tried to support families lacking "preparatory privilege"
[61] to get involved with their children’s creative coding activities.
Family-oriented coding programs are of particular importance as
studies on family use and perception of coding showed that parents’
main concern was that they would not be able to help their chil-
dren due to their limited programming knowledge [100]. To better
support parents to overcome their anxiety with programming [2],
designers have explored text-free programming platforms, finding

that families can successfully create together [5, 36]. Further un-
derstanding game programming in family contexts may reveal new
opportunities for linking youth interests in games with interest-
driven programming [18], family relationships [68], and formal
computing education [7].

While prior work shows the feasibility of family game program-
ming, it has not investigated the specific relational dynamics of
parents and children programming together. Understanding the
forms of collaboration that emerge in these settings is essential for
designing tools, platforms, and scaffolding that support this collabo-
ration. Joint use of media by parents and children has been broadly
examined through the lens of Joint Media Engagement (JME) [92],
finding many types of mediated interaction (e.g., cognitive, physical,
technical, affective) [31]. However, few studies have specifically
examined joint media engagement around programming and the
particular challenges of program comprehension. One of the closest
studies to these [5] focused primarily on the extent to which JME
occurred and not how it occurred.

Therefore, in this work, we asked: How do families jointly en-
gage in rule-based 2D video-game programming? To answer this
question, we ran a 4-week online study with 19 children (9 to 14
years old) and 16 parents. In a series of individual family sessions,
family members designed and programmed their games using a
rule-based programming environment called TileCode, which en-
ables video-game programming on low-cost devices. We observed
family interactions during learning activities and then analyzed
family computational and collaboration practices, their game arti-
facts, and their ability to decompose and compose game ideas and
examples into programming patterns.

Our findings revealed that families engaged in various game
design and programming strategies and struggled to start their
games from Scratch or identify how to modify existing complex
projects. However, they benefited the most from using a vocabulary
of programming patterns that expressed specific game behaviors.
For example, we found that TileCode was helpful in terms of con-
necting game elements to game actions but proved to be more
challenging when families were trying to create rules that would
affect multiple game elements at once. These insights can inform
the design of future family learning activities around video-game
programming and inform future DSL design efforts that provide
multiple ways to support the composition and de-composition of
game programming with dedicated vocabularies of programming
patterns.

2 METHOD
To analyze how families understand, plan and program their games
together, we structured our study across four online sessions that
engaged families in using the TileCode platform. These sessions
provided sufficient scaffolding to help families make meaningful
progress while letting us observe a diversity of rich family interac-
tions.

2.1 Participants
A total of 15 families, including 16 parents and 19 children, fully
participated in our study. We primarily recruited families with at

How families design and program games: a qualitative analysis of a 4-week online in-home study Conference’17, July 2017, Washington, DC, USA

least one child between the ages of 9-and 14 years old and encour-
aged participation by as many members of a family as possible. We
recruited these families by posting an announcement on several
family forums, social media groups, and family slack channels in
North America. A total of 120 families applied to participate in
the study, and we selected 19 families, trying to be as inclusive as
possible along the following dimensions: family structure, ethnicity,
geographical location, and socio-economic background. Of those
19 families, 15 attended all four sessions. The families unable to
do so (due to extraordinary family circumstances or scheduling
difficulties) were excluded from the final study analysis.

Parents’ ages ranged from the low-thirties to mid-forties, with
an average of 42 years. Fourteen of the parents were female, and
2 were male. Childrens’ ages ranged from 7 to 14 years old, with
an average of 10. Twelve of the children were female, and 7 were
male. Of the 15 families, seven reported speaking only English,
and three reported speaking English and Spanish (one also spoke
Romanian). The remaining five families self-reported speaking (in
aggregate) Thai, Indonesian, French, Mandarin, Cantonese, Hindi,
Marathi, and English. Table 3 (in Results) shows a full list of family
demographics and languages. Fourteen of the families were from
seven states across the United States (CA, CO, IL, GA, NC, WA,
and VA), and one was from Ontario, Canada. Most of the families
self-reported familiarity with desktop/laptop computers, tablets,
and smartphones, though one family reported familiarity only with
tablets and smartphones (all families but one participated in our
study using desktops/laptops, while the one family just mentioned
using a tablet). Four families self-reported no programming ex-
perience, while seven reported using Scratch. Four other families
mentioned Minecraft and Python.

2.2 Study Procedure
Our study had four sessions: 1) observe games (pre) and introduce
the TileCode programming platform, 2) design and program a game,
3) create a game with patterns, and 4) observe games (post) and
administer a quiz. All four sessions took place online using video
teleconferencing software. We held four online sessions over four
weeks with each family via video teleconferencing software and
recorded the video, including any screen sharing. We designed each
session to take place between 30 and 45 minutes.

Session 1: Observing (pre) initial game andTileCodewalk-
through. In Session 1, we wanted to see how participants talked
about video-game behavior (i.e., their vocabulary and how detailed
a description they gave). We created three games using TileCode
(replicas of Snake, Boulder, and Bejeweled) and recorded short
videos of the gameplay before the sessions. We played each video
in succession via screen sharing and prompted the participants to
describe: how the games worked, game characters and events, and
how they would change the games to make them more fun. We
randomized the order in which we showed the videos. After this
activity, we introduced the TileCode application to the families by
screen sharing our web browser. We walked through the various
parts of the application and modified a small example game us-
ing the rule editor (Figure 2). After this short overview, we asked
participants to repeat our steps in their web browser. Each family
picked one of the games from the videos and started changing it.

(Prior work has demonstrated that modifying games offers several
advantages over designing games from scratch [28] and is helpful
for on-boarding novices into programming [26, 27] and can be used
as a support for program understanding [37]).

Session 2: Designing and programming of games. Next, we
introduced children to the TileCode platform (described below),
so they could learn to program their video games. Then, we en-
couraged participants to use our "Game Design Activity" (described
below) and design their games. After they finished designing their
game on paper, the families started creating their game in TileCode.
We also distributed a low-cost, battery-powered gaming handheld
to each participating child so they could work with TileCode with-
out needing access to the Internet or a computer with a web browser.
Unfortunately, due to postal delays, only half of the participants
received the handheld arcades in time for study sessions and got
to choose if they wanted to create their game in the browser or on
that device.

Session 3: Creating games with patterns. To support chil-
dren in de- and re-composing games into game mechanics and
corresponding programming patterns, we created a list of 10 game
patterns (described in the next section). Then, we prompted partici-
pants to pick three patterns to use in a new game.

Session 4: Observing (post) other games and final quiz. In
this final session, we repeated the game observation activity from
the first session with three new game videos (replicas of Pacman,
Space Invaders, and a side-scrolling video game), gathering families’
descriptions of games. We also administered a short quiz to gauge
families’ understanding of TileCode programming.

2.3 Study Materials
This section describes the TileCode programming platform, the
game videos, study activity printouts, and the quiz we used in our
study to observe and evaluate how families engaged in video-game
programming.

2.3.1 The TileCode Programming Platform. TileCode is an
existing system [4] designed to enable the creation of simple video
games on low-cost gaming handheld devices. We summarize the
system’s essential features that are relevant to our study. Gaming
handhelds have a small screen, a four-way direction pad (D-pad),
and A/B buttons for selecting and deselecting. A secondary design
goal was to allow the programming of these video games via a
visual language of simple discrete rules with a minimum of text.
Due to the limited input affordances, memory, and screen real estate
of such gaming handhelds, both the TileCode user interface and
the video games are restricted to a 2D grid of tiles, navigated using
the D-pad. Figure 2(a) shows the “home screen” for creating a game,
from which the user can select one of four main activities at the top
(Map, Paint, Code, Play). The platform can run on various gaming
handhelds, but it is also available as a web app.

A large part of video-game design is storytelling [51], which
involves selecting and designing game characters and setting the
initial scene which these characters occupy (also called a map).
TileCode supports these activities in three ways. First, it provides a
preset gallery of tile backgrounds and programmable sprites; the
bottom of Figure 2(a) shows the four backgrounds and four sprites
that the user has selected from the gallery. Second, selecting the

Conference’17, July 2017, Washington, DC, USA Druga, et al.

Figure 2: TileCode screens: (a) game home screen, (b) rules menu, (c) paint sprite editor, (d) rule editor, (e) gameplay (f) map
editor.

map icon at the top left of the game home screen activates the
“map screen” of Figure 2(f), allowing users to design the game map
with tile backgrounds and sprites. Third, selecting the paint icon on
the game’s home screen activates the “paint screen” of Figure 2(c),
where the user can change the artwork associated with the four
backgrounds and sprites.

ProgrammingModel. TileCode programming involves writing
a set of rules that describe sprite behavior, much in the spirit of
AgentSheets [74]. Figure 2(b) presents the possible rules for the
player sprite, clustered by their type. Figure 2(d) displays a single-
player sprite rule, which consists of a When pattern on the left-
hand side and a Do action on the right-hand side. This rule reads
as follows: when the user presses the right directional pad (D-pad)
button and there is grass on the tile to the right of the player sprite,
then send the player sprite a move-right command. TileCode rules
execute in parallel over the game map. The user can code this rule
by navigating to the tiles in theWhen and Do sections to create
the pattern to match and the action to take. At the top left of the
screen in Figure 2(d) are the familiar menu actions for running the
game Figure 2(e) and modifying the map Figure 2(f). Other menu
options to the right allow new rules and navigation.

TileCode can run on a variety of gaming handhelds, but it is also
available as a web app. This portability was critical for our study
(especially when we needed to provide a tutorial or example via
screen sharing). The web app simulates the gaming handheld user
interface and provides keyboard bindings for the D-pad and A/B
buttons.

2.3.2 Game Videos. We created six games using TileCode and
recorded short videos of the gameplay, each about 40-60 seconds
long. The six games included: Snake (control a snake of increasing
length without colliding into itself), Boulder (control a player to
avoid falling boulders and collect diamonds), and Bejeweled (shuffle

Figure 3: Printout for Family Game Design Activity.

objects around so three objects of a kind can be connected) (videos
shown during the first session) and Pacman (control a player to eat
coins and avoid ghosts), Side Scroller (control a puppy to jump over
snakes on a treadmill) and Space Invaders (control a ship to fire
pellets at other ships and avoid their attacks) (videos shown during
the last session). The videos did not include examples of rules and
had no audio.

How families design and program games: a qualitative analysis of a 4-week online in-home study Conference’17, July 2017, Washington, DC, USA

2.3.3 Game Design Activity. For this activity, we designed a
printout paper sheet where both children and parents were to
answer the following questions: “What are the game characters?”,
“What are their actions?”, “What is on the game map?” and “What
are the game rules?” We asked parents to print out the form in
advance of the session and encouraged both children and parents
to fill out the sheet. When designing this activity, we built on prior
studies showing that unplugged programming activities [91] and
physical game design sheets [45, 62] are effective ways for junior
high school students to improve and develop their computational
literacy skills. The printout sheet is included in described in Figure 3.

2.3.4 Game Patterns. Soloway and his colleagues provided ev-
idence that both novice and expert programmers have schemas
that match commonly used code patterns, which they termed pro-
gramming plans. Programming plans are small program fragments
that achieve a goal, like selecting values from a list that match
specific criteria [85]. Other studies have shown that novice pro-
grammers use many code tracing and pattern recognition strategies
[32]. Specific research on children’s game programming showed
that providing programming patterns and templates for different
game types could facilitate computational literacy and expression
[33, 44, 53, 93]. These approaches encouraged us to create a collec-
tion of ten game patterns that children could use as examples when
devising their game plans and game behaviors. Our patterns pro-
vided examples of different game behaviors (e.g., throwing objects,
animated motion). For each example, we showed an animation of
the game’s behavior in action. In addition, we showed images of the
combination of game rules that could be used to achieve particular
behavior.

2.3.5 “Guess the Rule” Quiz. After watching the videos, we
asked the children to answer the "Guess the rule" quiz. We shared
the quiz on our computer and asked children to talk aloud as they
replied to questions. The quiz asked questions about three rules:
a motion rule, a collision rule, and a trigger rule. For the first two
rules (motion and collision), children had to pick the correct expla-
nation (multiple choice). For the trigger rule, the children had to
write down their explanations. The quiz is included in the appendix.

2.3.6 HandheldArcade. Wedistributed a low-cost, battery-powered
gaming handheld (a “Meowbit”) to each participating family so they
could work with TileCode without needing access to the Internet or
a computer with a web browser. When the Meowbit runs TileCode,
it can store eight games at a time. Families could copy their video
games from the Meowbit to their computer and then send them
to us, letting us inspect and test their games. Unfortunately, the
ability to transfer games between the TileCode browser application
and the Meowbit was not available at the time we ran the study.
The device has four directional buttons and two selection buttons
(select and back). In addition, it contains a 1.8’ full-color screen, 6 x
programmable buttons, 1 x buzzer, built-in light sensor, temperature
sensor, and SD card slot (for external storage).

2.4 Data Collection and Analysis
Our data included pre-and post-perception game descriptions and
video recordings of all sessions. One of the first sessions was not
appropriately recorded, resulting in five minutes of video. The first

session averaged 38minutes in length (not including the five-minute
outlier), while the second, third, and fourth sessions averaged 45,
40, and 47 minutes in length, respectively. We captured 43 hours of
video, an average of about 170 minutes per family. The first author
transcribed the videos for qualitative analyses and noted comments
about children’s body language and non-verbal interactions. The fi-
nal corpus included 1,088 pages of transcripts (317,384 words). Once
all transcriptions were completed, the first two authors reviewed
half of the data independently, as described below.

2.4.1 Theoretical framework. Our qualitative analysis was in-
formed by Joint-Media Engagement (JME) framework to guide how
we analyzed how family members interacted with each other during
the study sessions. JME explores "spontaneous and designed expe-
riences of people using media together" [92]. Joint-media engage-
ment between parents and children is linked to higher self-efficacy
and expertise with computers [59], increased family connectedness
[69], increased engagement and interest in computing [83], and im-
proved creativity and thinking skills during pair-programming with
parents [2]. Informed by this extensive prior work on JME in non-
programming media, our JME analysis examined inter-participant
interactions during game design and programming, analyzing in-
teractions around specific programmatic and content aspects of the
family’s engagement with the platform.

Although not theoretical, our analysis was also informed by prior
work that examines the scope of learners’ use of programming
constructs to characterize their program understanding [20, 52,
99]. This methodological frame aligns with JME because it uses
particular programming language constructs as a focal point for
interaction with a platform.

2.4.2 Analyzing games. To analyze interactions through a JME
lens, the first two authors separately analyzed each transcript using
a combination of etic codes developed from our theoretical frame-
works and emic codes that emerged from the interviews themselves
[65, 71]. Next, we listed all the program understanding, planning,
and writing practices [85] specified in prior studies with novices
learning how to code [98] and identified connections with a series
of themes that emerged from our study. After we developed a fi-
nal coding frame, all transcripts were coded by the first author. If
new codes emerged, both authors discussed discrepancies in the
analyses until they reached an agreement. We used this process
to develop categories, which we then conceptualized into broad
themes after further discussion [12]. Table 1 presents the final list
of codes, their definitions, and their presence across the different
study sessions.

Our resulting categories focused on interactions around three
aspects of families interactions in TileCode. First, we analyzed
rule types, aiming to provide a low-level picture of the kinds of
rules within an artifact. Second, we analyzed game types to broadly
characterize the genre of the entire game. Third, we analyzed pattern
types to highlight the game mechanics and computational patterns
(if any) in their work.

Rule types. To analyze structure, we analyzed the rules in each
artifact. We looked for change, keypress, and collision rules created
by each family. We ignored rules created with direct help from or
by a researcher. We considered rules "complex" if they involved
multiple kinds of tiles; otherwise, theywere called "simple." A simple

Conference’17, July 2017, Washington, DC, USA Druga, et al.

Study sessions
Code Definition 1 2 3 4

Identify elements Recognize game characters or map components x x
Identify events Recognize game triggers or behaviors x x

Connect elements
to events

Determine connections between game elements
and specific game events or player actions x x xReading

semantics
Identify game play

Recognize how a series of game events and
actions compose a familiar game play x x x x

Identify patterns
Recognize a combination of rules
that creates a known game mechanic x x x

Learn patterns
Learn to recognize a common combination of
rules from a family member or researcher x x x

Plan pattern
Devise new game patterns while still observing
existing game patterns x xReading

templates
Unsure patterns

Not being sure if an observed combination of
rules leads to a known game mechanic x x x

Plan goals Plan game goals and types of elements/map x x
Create element Create or change a game character x x x
Create map Create or change the game map or specific tiles x x x

Rules Changes Modify, test and correct existing rules x x x x

Writing
semantics

Rules Editing Create a new rule and debug rule conflicts x x x
Plan mechanic Plan a specific game behavior or action x x

Implement pattern Implement a specific game behavior or action x x x
Correct pattern Correct the order or choice of rules for a pattern x x x

Writing
templates

Debug combinations Test and correct flow of multiple game actions x x
Collaboration Children and parents support each other x x x x
Parent prompt Parent prompts a child with examples or questions x x x x
Make it fun Changes made to make the games more fun x x x x
Game design Discuss and plan various game designs x x

Family Joint
Engagement

System Feedback Provide feedback and ask for specific features x x
Table 1: List of final codes used for transcripts analysis, their definitions and presence across the different study sessions.

rule is "When the right arrow is pressed, move that sprite to the
right." A complex rule example is "When the A button is pressed,
create a new sprite." The latter rule involves multiple constraints
because it is triggered by pressing the A button, leading to the
creation of a new character. Complex rule examples include deleting
one of the colliding game elements, generating new backgrounds
or sprites upon collision, and collecting points. For every family, we
tracked whether they had (or had not) created simple or complex
rules of each of the three types (change, keypress, and collision).

Game types. To analyze families’ design choices, we categorized
the kinds of games created by each family. The first two authors
clustered all games across the four sessions into three groups based
on the overall game genre. These groups emerged through a joint
inductive-deductive approach [65, 71]. We tracked whether they
had created a game that belonged to each group for every family.

Pattern types. To provide another lens into computational com-
plexity inside a game, we looked for design patterns that com-
monly occur in video games. We developed a set of patterns to look
for within families’ final games. For every family, we deductively
tracked whether they had constructed an instance of a pattern from
each category. We describe these patterns in Table 2.

In each category, we report the presence or absence of a category
instead of counts; since our participants used TileCode for differing

amounts of time, actual counts would not be comparable across
families. However, creating a specific type of rule, game or pattern
is categorical evidence of engaging with computation in TileCode
since there are many ways to use it without creating rules at all (e.g.,
playing with existing games or just modifying game maps). The
first two authors independently performed these analyses on all
games from these sessions and compared their results. We resolved
any mismatches by referring to the video and the saved game.

3 RESULTS
We now present an overall summary of our perceptions of families’
experiences and then discuss our results relative to the following
research question: How do families jointly engage in rule-based 2D
video-game programming? Our qualitative analysis revealed that
throughout the study, parents played a significant role in support-
ing children to engage in video games programming by jointly
engaging in 1.) Problem Formulation (Abstraction) during ses-
sion 1 on game observations and session 2 on game design; 2.)
Solution Expression (Automation) during session 2 on game
programming and session 3 on game patterns; 3.) Execution&
Evaluation (Analysis) during session 4 when analyzing games
anew and responding to "Guess the rule" quiz. The level to which
each family jointly engaged in these practices varied. To illustrate

How families design and program games: a qualitative analysis of a 4-week online in-home study Conference’17, July 2017, Washington, DC, USA

Game Description

Static
No rules, map edited witch new tiles
or sprites (i.e., tile art with colors)

Animated
With sprites that move on their own
(i.e. ghosts that move around)

Interactive
At least one sprite is controlled by the
player, either by pressing keys or by
painting the map with other sprites.

Pattern Description
Collectables Collect items (i.e. food in Snake)

Obstacles
Avoid map elements or other sprites
(i.e. avoid falling boulders in BoulderDash)

Firing
Players can create sprites on key press
(i.e spaceship firing missiles)

Animation
Non-player sprites can move on their own
(i.e. wheels on a conveyor belt)

Painting
Player edits map when moving
(i.e. creating a pond trap for snakes)

Portal
Player can teleport from one tile to another
on different regions of the map.

Win /Lose
Determine how to win or lose a game
(i.e. collect all food to win)

Table 2: (a) Game Types, (b) Game Patterns.

this variation, we present several engagement tactics that emerged
from our inductive analysis.

3.1 Family Joint Engagement in Game
Programming

Concerning learning to program, the contexts in which families
use coding environments matter. In particular, researchers have
highlighted how co-engagement or joint media engagement (JME)
[92] is supportive of family learning. For example, our study identi-
fied four main instances of joint family engagement when playing,
designing, and programming games: Collaboration, Prompting,
Make it fun, Game design.

We observed children and parents collaborate in many distinct
ways: by having parents explain technical aspects of the program-
ming platform, by debugging rules and pattern implementation
together, or by building on each other’s ideas for game designs. For
example, the mom in F3 explained that the Princess sprite looked
different on the gameplay screen versus the map editing screen
because of the reduced resolution; the dad in F5 explained how the
boulders in Boulder Dash fell in terms of the principle of gravity.
In addition, parents collaborated with children when debugging by
reminding them to test their rules or by proposing ways to correct
game patterns:
"So now, if you go back to your game, you will see that you are not
able to push the cat on the walls anymore. Because whenever the
cat smashes into the wall, it has to stop." — S., mom F1, referring to
pushing object pattern. "Oh, let me try that and see if it bounces."
— G., child F1, testing his mom’s suggestion.
Prior studies that analyzed children’s programming games alone
showed that youth would often create more complicated code
scripts (analogous to a set of rules in TileCode) before testing their
programs. This would result in children having a harder time identi-
fying where and why their code breaks [13, 94]. Even if the parents
in our study did not always know how to create or correct a game
rule, they supported their children by prompting them always to
test their changes as they were making them. In this process, par-
ents and children jointly engaged in a three stages model for game
modding and programming, "Play-Fix-Create/Mod," which maps to

Figure 4: Examples of joint family engagement during the
study: a) mom & daughter in F11 discussing game design;
b) mom & son in F12 debugging their code; c) sisters in F3
watching game videos.

the stages of progressive engagement with computational thinking
“Use-Modify-Create” observed in prior studies [54]. The parents in
F1, F3, F8, F13, F15 prompted their children to elaborate on their
game ideas and contributed their suggestions. Parents’ prompts
were also helpful when children did not know how to implement
their games; parents would ask, "What should this character do?"
after the child created a new game element and added it to the map.
When children did not understand specific rules or game patterns,
parents sometimes proposed useful metaphors and examples from
real life to help them:
"I do not know how to do this portal thing." — S., child F10, trying
to adapt the portal pattern example. "It is like, you know, Doctor
Strange in the movie; he opens a hole, and he steps through it,
and he appears somewhere else. So then the somewhere else is
somewhere on the map." — J., dad F10, explaining the portal
pattern to his daughter.

Prior studies where children were designing and programming
video games alone showed that many students did not start working
and implementing their game ideas right away. In contrast, others
started with one idea, abandoned it quickly, and moved on with
a new one [?]. In our study, parents helped keep their children

Conference’17, July 2017, Washington, DC, USA Druga, et al.

on task and supported them to scaffold their ideas by encouraging
them to pick one thing to try:
"I was trying to figure out what they can put on the cartwheel." —A.,
child F13, referring to his Scroller game. "Oh yeah, exactly, so tell
me what sprites you are putting on." — R., mom F13, responding
to her son.

Families also jointly engaged in game design by imagining how
they could make the games from the videos more fun by proposing
various modifications: add timers, add multiple screens and levels,
increase the number of obstacles over time, collect game elements
for re-using later, increase the number of sprites and portals over
time, and play the game with multiple player sprites at once (e.g.,
two snakes).
"Yes, so basically we want to have two snakes. One is like I control,
and I do not want it just moving around by itself." — C., age 14,
F2, referring to a snake game.

The family interaction we observed during these brainstorming
sessions mirrored the experiences of children pair-programming
in non-family contexts [38] and remixing existing games in new
creative ways [20].

3.2 Problem formulation: Post Game
Descriptions & Game Design

During the first session, when asked to observe and describe games,
families either focused on identifying game elements, identifying
game events, or recognizing familiar game mechanics and differ-
ent forms of playing the game. Participants could formulate more
elaborate game descriptions when familiar with a particular game
mechanic or type. For example, F14 recognized the similarity be-
tween the Bejeweled game shown in the study and the Candy Crush
game and fully described game rules and logic.

When unfamiliar with a particular game, families only described
the game’s most salient aspects. For example, F9 and F4 identified
how the player in Boulder Dash collected diamonds but did not
recognize that it needed to avoid falling boulders. Likewise, F8
identified that the snake in the Snake game eats apples but did
not observe that it ends if the snake touches its tail. During this
session, parents primarily helped their children to engage in dif-
ferent levels of game reading by prompting them to describe the
actions/interactions between the characters (support with abstrac-
tion) or by helping them to recognize similar game behavior or
game mechanics from other familiar games (support with pattern
recognition):
"You’re trying to collect all the gems, then you have to try to avoid
the boulders falling on you" —M., age 8, F10, describing the Boul-
der Dash video. "Andwhat happens if you havemultiple boulders?"
— N., dad F10, helping his daughter to identify additional game
events.

Prior work has demonstrated that children being able to engage in
game "reading" supports their ability to write their games and learn
essential programming concepts such as abstraction, decomposi-
tion, pattern recognition, and algorithm design [44, 57]. Moreover,
Repenning et al. have shown that recognizing the pragmatics of
programming rules and being able to comprehend programs in
the context of specific situations is one of the main cognitive chal-
lenges in video-game programming for youth [76]. In this context,

parental support in describing and decomposing game mechanics
can help children overcome some of the common challenges when
programming their games.

3.3 Solution Expression: From Game Concept
to Code

In session two, we observed a clear pattern of family programming
behavior. Participants started by formulating game goals and events
and then designed the elements and map of the game; as they added
elements to the map, they created rules to control game elements
or make them interact with the map. What varied were the tactics
that family members used when planning and programming their
games. One primary source of variation was how families generated
reading andwriting semantics practices.When asked by researchers
how they would make the game more fun or more challenging,
families proposed changing game rules by either changing the
speed of motion for sprites (F5, F10), adding more obstacles (F6), or
adding a timer for specific actions (F7).
"Basically, we want to have two snakes. One that I control and one
that is just moving around by itself." — C., age 14, F2, referring to
his changes to the Snake game.

When families designed and planned their games using our "Game
Design" sheet, children found it difficult to scaffold their complex
game ideas (e.g., Minecraft (F11, F12) or Chess (F2)) into a set of
game elements and rules that could be implemented in TileCode.
Parents helped them adapt their ideas to match the platform’s
capabilities:
"I am thinking of the way the game will look; it will be like a bird’s
eye view. If you jumped or have anti-gravity boots, you could run
on Mars or the Moon ." — R., age 12, F12, referring to his game
design idea. "I do not think you can do 3D in here. What if you add
brown tiles to make it look like Mars." — D., mom F12, helping
her son to adapt his game design to TileCode.
Participants typically anchored their game idea around a strong

narrative concept and then adjusted game mechanics based on
the TileCode platform capabilities as they designed their sprites,
edited the map, or created their first rules. The narrative and game
mechanics sometimes emerged as participants edited the map or
modified the existing sprites gallery. For example, K. (F9) started
by creating a haunted house with spider webs on the game map.
She later decided to use the map tiles that had spider webs to give
clues to the ghosts in her game:
"If we are going to find a treasure, we have a pickup action." — C.
& C., ages 11 & 12, F2 planning their game events. "I am going
to put some spider webs in my maze and use the orange sand in
a few places. I do not know what it will do later, but it makes it a
little scarier." — K., ages 11 & 12, F2 planning their game events.

This is consistent with findings from prior work [45] that com-
pared two-game programming platform versions, one with a rich
narrative and one with a light narrative. It found that participants
who programmed in the rich narrative version made fewer pro-
gramming errors and were more engaged. Other participants, S.
and M. (F2), were upset that the default gallery of sprites did not
have enough female sprites. So they decided to change the default
sprite into a female warrior with a hammer and created an entire
game inspired by Minecraft around this character. Concerning rule

How families design and program games: a qualitative analysis of a 4-week online in-home study Conference’17, July 2017, Washington, DC, USA

creation in their games, children found it easiest to start by creating
rules that connected game elements to specific events. Parents often
prompted the creation of a new rule when children would add a
new element to the game map by asking what the purpose or action
of the element is:
"Why are you putting a wall there? Do you want to block it?" — S.,
mom, F1 asking her son about his most recent map changes. "He
is moving over the walls because we did not tell it he can go over
the walls because there is no barrier. " — G., age 7, F1 referring to
the main sprite in his game. "Oh wait, that is a half-eaten Apple.
So whenever I am going to eat an Apple, we will see a snake wait;
let me try to do it without dying." — C., age 11, F2 referring to the
Snake game.

This interaction is similar to prior studies which analyzed kids
collaboratively creating and modifying video games, finding that
students started by playing with preliminary game ideas and dis-
cussing what they would change in the game design iteratively as
they were creating simple program actions [21, 37].

During session two, it was easier for families to create keypress
and collision rules with direction connection either (1) between
player actions and game elements actions (e.g., press right arrow
moves sprite to the right) or (2) between two game elements on
the map (e.g., when a snake touches an apple). On the other hand,
creating change rules for game events such as continuous motion
(e.g., making a sprite jump over an obstacle) was more challenging
since they had to compose game behavior from various rules that
kept track of the sprite’s state at variousmoments during themotion
on the map (e.g., when a sprite is left of another sprite move up):
"The trick is we do not have a way in TileCode to say here is the
ghost, and the player is somewhere below me. I want another way
to do things, so I have a notion of something it is somewhere below
me as opposed to directly below me." — C., age 14, F2, referring to
her ghost animation pattern.

When participants began modifying the map to test a specific rule,
they often got distracted and wanted to add more background el-
ements or make more map changes (F1, F5, F9, F14, F15). Parents
helped keep their children focused on the task at hand and sug-
gested that the platform automatically add sprites to the map when
a new rule for a sprite is created so users do not get distracted by
editing the map.

Overall, participants engaged in a combination of game planning
and "bricolage" when creating their games, similar to other studies
where children were programming their games alone [47]. However,
in our study, parents played a significant role in scaffolding the
game planning when needed and in encouraging their children to
code bricolage via iterative testing and collaborative debugging.

3.4 Solution Expression: From Game
Mechanics to Programming Patterns

During the third session, families were introduced to a collection
of seven-game patterns (see Table 2). While watching the different
pattern animation examples, participants often identified and com-
pared other similar game behaviors they observed in prior study
sessions or when they played games on their own. For example,
F8 compared the snake’s random movement (non-player character

movement pattern) with the ghost’s movement in the Pac-Man
game.

As families picked a collection of three patterns to build a game,
we observed how families combined the same three patterns into
different games. For example F13, F5 and F10 picked the Firing,
Animation and Win/Lose patterns (see Table 2). F13 built a game
with a cowboy that can sprinkle fairy dust over flowers (Firing),
which then become apples that the cowboy collects to win the
game (Win/Lose) while avoiding animated cacti (Animation)(see
Figure 5.c). F5 built a racing game between two animals, a panda,
controlled by a player (Firing), and a dog that runs by itself (Ani-
mation); whoever touches the finish line tiles first wins the race
(Win/Lose)(see Figure 5.a). F10 made a game with a student and
a teacher where the student is being chased by the teacher (An-
imation) and leaves a bubble gum trail behind (Firing). If the student
touches the dome before the teacher, hewins the game (Win/Lose)(see
Figure 5.b).

Overall, families picked various combinations of three patterns
for their games in the third session, which resulted in a wide range
of game types: interactive games, where a player is being controlled
in different worlds (F1, F4, F6, F13); animation games, where a story
is being played out (e.g., a haunted house with moving ghosts)(F5,
F9, F15); and art games, where the goal is to paint the map either
via sprite motion or by direct editing (F2, F8, F10, F14).

Plan mechanics. After using the patterns from our gallery of
examples, some of the families (F1, F2, F6, F7, F11, F12, F15) went
back to their original designed games and started adapting and
combining learned patterns to create new game mechanics. For
example, F2 created amodified version of a portal pattern to teleport
the player from a green tile to a brown tile (see Figure 6.a); F7 made
a bounce pattern to make the puppy move back when touching the
wall tile (see Figure 6.b); F12 modified a firing pattern to create new
puppy sprites on A press and made them move up (see Figure 6.c).

When creating their patterns, families first described the behav-
ior they wanted to see in the game. They then planned and decided
what type of rule combinations were appropriate to create this
behavior (e.g., using a collision or changing a rule). Finally, they
created one rule at a time, modified the map to test each rule, and
corrected the rule or edited the map if needed. Some participants
used the results of testing to build more complex models of the
games’ mechanics. For example, F14, F12, and F10 had a rule that
painted the map and another that used newly painted tiles as a
constraint (e.g., the teacher sprite could only walk on the bubble
gum trail created by Student sprite F10 (see Figure 6.b). Other par-
ticipants modified push sprites and portal patterns to make multiple
game elements interact with each other:
"You could have something like a color that’s trying to overtake
the screen, then the projectiles can send it back like defending, but
if you take the time, then you can push another color block in front
of it, and then that will stop them." — C., age 14, F2, planning
to use Firing and Painting patterns to control multiple sprites.
"Check this out, all the coins become snakes, and they can kill us.
Oh my God, this is hilarious." — C., age 14, F2, referring to his
Pacman modifications.
As their games became complex, families had to handle conflict-

ing rules (e.g., a sprite being triggered to move and stop by different

Conference’17, July 2017, Washington, DC, USA Druga, et al.

Figure 5: Examples of games families created using three patterns: a) race game between a panda a dog; b) a student being
chased by the teacher on a bubble gum trail; and c) a cowboy sprinkling fairy dust over flowers to make them into collectable
apples while avoiding animated cacti.

rules). In addition, it was harder for them to modify and correct
their patterns when the number of rules increased, making it dif-
ficult to keep track of changes. Several families (F2, F4, F11, F15)
asked for easier ways to connect multiple game elements by hav-
ing "if/else" rules. The participants who struggled with animation
patterns (e.g., random motion or jumping) also expressed the need
for higher-order rules that could describe sprite behavior rather
than composing them from a set of discrete rules:
“I would like to control multiple codes at once.” — K., age 9, F8,
referring to their jumping motion pattern.

3.5 Execution & Evaluation: Post Game
Descriptions & Quiz

In their post-game descriptions, most families (except F14 and F10)
formulated elaborate descriptions for each game, including the
games they were not familiar with and saw for the first time. Un-
like the pre-game descriptions, they explained game events and
elements in detail and the conditions necessary to trigger these
events (e.g., the shooter only moves left to right, and the space
ships slide down when on black tiles in Space Invaders). In post
descriptions, children also found it more accessible than pre-game
ones to recognize player actions required to trigger game events
(e.g., pressing the D-pad vs. the A button) and identify additional
actions, such as the creation or deletion of sprites. Parents did not
have to intervene with prompts or questions to help them describe
the videos in this session.
"Or maybe there are ways to tell the system like generate ten snakes
and make a move, and you would know where to place them and
how to make them move. " — R., age 12, F12, sharing his feedback
for future features.

Of 15 families, 12 participated in the "Guess the rule" quiz. All 12
families identified the correct explanation for the collision rule ex-
ample; 9 families identified the correct explanation for the keypress
motion rule example; 9 families correctly described the firing pellets
pattern. The percentage of children guessing the program rules cor-
rectly in our final evaluation suggests a positive trend as compared
with other studies where students had to identify program rules in
scientific model simulations on their own, and only 14% identified
all key rules [97].

3.6 Computational Analysis of Family Games
We now describe the results of our analysis of the rule vocabulary,
the presence of specific game patterns, and the overall artifact type
families used and created in their games. Rule types. All study
families createdmultiple kinds of rules in TileCode (see “Rule Types”
column in Table 3), which highlights several important points. First,
our results indicate that every family created some new rules in
example games, which meant that they had to engage with the
system and modify the rules on screen. This is significant: if most
families were unable to create new rules in example games, then
the interface may have been poorly designed. Second, separating
rules into simple (affecting one sprite or background tile) vs. com-
plex (affecting multiple sprites or background tiles) is analogous to
classifying code as modifying one object vs. modifying multiple ob-
jects. From a SOLO Hierarchy perspective, [58], the ability to create
simple or complex rules can be seen as reflecting unistructural vs.
multistructural understanding of TileCode’s programming model.
Simple rules create simple mechanics (like pressing a button to
move a sprite), while complex rules can achieve more sophisticated
game mechanics (e.g., pressing one button to create a new sprite
next to a current sprite or “firing”).

As the first three columns of Table 3 show, several families cre-
ated complex rules of multiple types. For instance, siblings in F2
created a complicated maze game with four arrows controlling
the motion of a diver sprite. They created complex press rules for
each type of arrow that could be pressed, reflecting their multi-
structural understanding that an event (keypress) triggered on one
action (move left) could modify another (diver).

Game types. Our analysis of game types revealed three genres
of games our families created: static, animated and interactive
(see Table 2). Table 3 (“Game Types”) summarizes our classification
of artifacts and Figure 7 shows examples of games for each game
type.

Game patterns. Our analysis of game patterns revealed sev-
eral practices. Almost all families (except three) used the Win/Lose
pattern in their games; the next most popular were Obstacles (11
families) and Animation (10 families). Even when families picked
the same patterns for their games, they used and adapted them
in different ways to create very different mechanics (see Figure 5).
Table 2 describes the patterns collection we provided in session
three, while Figure 6 provides examples of families’ new patterns.

How families design and program games: a qualitative analysis of a 4-week online in-home study Conference’17, July 2017, Washington, DC, USA

Figure 6: Examples of patterns created by families during the study: a) portal pattern which teleports the player from a green
tile to a brown tile; b) bounce pattern which makes the puppy move back when touching wall tile; c) firing pattern which
creates new puppy sprites on A press and makes them move up.

Rule Types:
Change (CH), Key (K)

& Collision (C)
*=complex

Games:
Static,

Animated,
Interactive

Pattern Types:
Collectible, Obstacle,
Firing, Animation,
Portal, Paint, WinID Parents

& Ages FL Children
& Ages CH K C S A I C O F A P Pa W

F1 Mom, Dad (35) Spanish Boy (7) ✓ ✓* ✓* ✓ ✓ ✓ ✓ ✓ ✓

F2 Mom (45) Thai Boy (11)
Girl (14) ✓* ✓* ✓* ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

F3 Mom (45) None Girls
(10 & 12) ✓ ✓ ✓* ✓ ✓ ✓ ✓ ✓

F4 Mom (40) None Boy (9)
Girl (11) ✓ ✓* ✓ ✓ ✓ ✓ ✓

F5 Dad (45) None Girls
(7&9) ✓* ✓ ✓ ✓ ✓ ✓ ✓ ✓

F6 Mom (35) Spanish Girl (10) ✓ ✓* ✓ ✓ ✓ ✓ ✓ ✓ ✓
F7 Mom (45) Indonesian Boy (10) ✓* ✓* ✓ ✓ ✓ ✓ ✓ ✓

F8 Mom (45) French Boy (9)
Girl (10) ✓* ✓ ✓ ✓ ✓ ✓ ✓ ✓

F9 Mom (35) Spanish Girl (10) ✓ ✓ ✓ ✓ ✓ ✓ ✓
F10 Dad (40) Hindi Girl (8) ✓ ✓ ✓ ✓ ✓ ✓ ✓
F11 Mom (35) Romanian Girl (14) ✓* ✓* ✓* ✓ ✓ ✓ ✓ ✓ ✓ ✓
F12 Mom (40) Hindi Boy (12) ✓ ✓* ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
F13 Mom (40) None Boy (11) ✓ ✓* ✓* ✓ ✓ ✓ ✓ ✓ ✓ ✓
F14 Mom (35) Spanish Girl (9) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
F15 Mom (40) None Boy (8) ✓ ✓* ✓* ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3: Computational analysis of each family game.

4 DISCUSSION
Our research question was: How do families jointly engage in rule-
based 2D video-game programming? Our results suggest that fami-
lies engaged in video-game programming and planning in a highly
non-linear way, switching between design, program understand-
ing, program composition, program decomposition, and program
testing. However, unlike many collaboration patterns found in mod-
els such as pair programming, families exhibited a dynamic shift
in roles and power, with parents sometimes offering to scaffold,
prompt, and guide like a teacher might, sometimes contributing
as a peer in design ideation, and sometimes following their child’s

lead in expressing design ideas in code. The result of these com-
plex collaboration patterns was that understanding the platform’s
programming language and game design patterns was emergent:
families refined their understanding by evaluating rules they mod-
ified or created together and then imagining richer possibilities
once they had learned what was possible. By the final sessions,
both parents and children not only demonstrated a greater under-
standing of the platform’s capabilities, but they were jointly able to
demonstrate an understanding of complex programming patterns
and to engage in game decomposition fully (during game descrip-
tions), game design and program planning (during game design
session), program planning with patterns (during game creation

Conference’17, July 2017, Washington, DC, USA Druga, et al.

Figure 7: Examples of game types created by families during the study: a) static game displaying different colored tiles; b)
animated game where the diamonds move automatically; c) interactive game where you can control a princess to explore a
haunted house.

with patterns), and program tracing and explaining (during the
“Guess rule game” quiz). These observations suggest that family
learning in game programming is distinct from solitary or even
peer collaborative learning along multiple dimensions.

Family Joint GameProgramming.Our qualitative findings of
families’ video-game programming joint engagement suggest new
interpretations of prior research on child programming practices.
Whereas prior work has focused mainly on children’s accounts of
program understanding (e.g., how children learn to program games
[25, 30, 48]), our investigation of family video-game programming
from a joint-media engagement lens [89] suggests that children and
parents support each other in significant ways to design and pro-
gram games. These supports include problem formulation via game
descriptions and design, solution expression via iterative game
planning, programming and debugging, and solution execution and
analysis via composition and decomposition of game mechanics to
programming patterns. We found that our designs of different activ-
ities for game understanding, design, and programming let families
with different perceptions, attitudes, and knowledge about games
and programming engage in the following learning processes suc-
cessfully: Activities in sessions 1 and 4 supported families to engage
in discovering the programming logic and critical thinking behind
popular video games. Activities in session 2 supported families in
game design, composing object-oriented narratives, and engaging
in iterative programming planning and debugging. Activities in
session 3 supported families to develop systems thinking and rea-
son logically and critically about complex scenarios by adapting
and creating game patterns. By designing activities that allowed
families to move in and across a repertoire of practices [40, 79] we
supported multiple forms of participation [39, 67] and created the
potential for authentic interactions and expansive learning [29] in
the context of family video-game programming.

Our results suggest that engaging families in joint video-game
programming can lead families to envision new ways for them to
learn about and engagewith this medium [68]. Moreover, it presents
the possibility to use artifacts they are familiar with, such as video
games and handheld arcades, and envisions sites of possibility for
computational thinking and expression[67] within their individual
and joint dispositions and repertoire of practices. Notably, newly
acquired practices and skills led some families to consider making

meaningful use of gaming devices in their homes and re-designing
their interactions with them. These findings suggest that the family
has the potential to act as a space for creative coding with games,
where both children and parents can develop programming skills
by combining family social contexts for learning (co-play) and their
collective zone of proximal development [96].

Platform design choices.While our research questions were
not specific to TileCode, the platform inevitably shaped what learn-
ing and interactions occurred. Moreover, observations about the
specific design of TileCodemight reveal implications for other game
programming platforms. TileCode programming model supported
families to engage in "Play-Fix-Create/Mod" programming flow [54]
which enabled iteration and refinement of rules. It also supported
graphical re-writes via the use of game patterns which families com-
position and decomposition of games. Prior studies have shown
such graphical re-writes analogies support novices to better under-
stand their code by avoiding the inheritor copy/past/reuse dilemma
[72]. Moreover, the use of game patterns that can easily be modified
in different game contexts supports learners to create their own
logical rules analogies [76].

All rules in TileCode have an input (“When”) and output (“Do”)
(see Figure 6). Typically, participants first created the rule to detect
an input condition (e.g., when on green grass) and then tested the
rule; they then decided on the output(e.g., destroy one of the other
sprites, add points, win the game, lose the game). A TileCode rule
editor feature that was helpful when participants were refining their
rules input and output conditions was that tiles were numbered so
participants could tell exactly where to add more conditions (e.g.,
add grass tile on tile number 2) (see Figure 6.a).

Families’ use of the TileCode system also highlights several op-
portunities for improving the experience within this paradigm. For
example, families struggled when creating continuous motion pat-
terns where they had to keep track of sprites’ state. Another issue
was keeping track of rule conflicts and rule interactions (emergent
behaviors) as the games became more complex. This suggests that
future iterations of our platform should provide the option to write
higher-level methods that can combine sets of low-level rules into
procedures (e.g., if the condition is true, use rule 1 or else use rule
2). A similar solution was implemented successfully in systems
like AgentSheets [75] and StarLogo [10]. Moreover, prior studies

How families design and program games: a qualitative analysis of a 4-week online in-home study Conference’17, July 2017, Washington, DC, USA

Figure 8: Examples of future debugger feature which can be used to indicate game sprites state: a) snake is moving left while
the apple is stationary ; b) player is moving right while the diamond is stationary ; c) skulls are moving from left to right while
descending and the space ship is stationary.

suggested opportunities to combine discrete rule creation, program-
ming by demonstration, and direct manipulation techniques to
facilitate game programming for youth [19, 77, 84]. However, im-
plementing such functionality within the computing constraints of
low-cost handheld devices remains an area of open research.

Other game programming paradigms might prevent difficulties
in keeping track of rule interactions. For example, consider a game
where the high-level scenario is for the user to control a cat chased
by several dogs trying to catch it. In Kodu Game Lab [60, 90], the
user can give a single rule, such as “If a dog sees the cat, move the
dog towards the cat” to realize the behavior, which can be complex
(the predicate “sees” depends on the distance between the sprites
and whether a third sprite is between them, and the action “move
towards” has similar behavioral complexity). On the other hand,
in TileCode, families need to consider how to express the “chasing
behavior” via a set of local rules based on exact matching of patterns.
These differences between TileCode and other languages illustrate
how the particular semantics of a platform can have an impact on
what families can learn to express.

Future Work Debugging support. One potential new design
feature for TileCode inspired by the findings of this study is to
provide a debugger option that families could use when they want
to keep track of sprites state as different rules are being executed.
This can allow families to more easily identify the correct sequence
of rules required to create specific animates (e.g., how should the
move the head of the snake vs. the body of the snake in turns
(see Figure 8.a). While we have used this feature internally while
developing the TileCode Platform, we believe it could be beneficial
for family members to use it when necessary. It would also be
helpful to modify the rule editor to highlight rule conflicts. There is
an opportunity on theweb simulator to show both the gameplay and
the rule editor in parallel and highlight rules as they are triggered
in the game (e.g., show the rule for smashing when the snake eats
the apple).

Controlled Automation. Children and parents also requested the
option of auto-generating some of the game background elements
based on their initial description of the game design. Prior work on
the Gamechangineer platform showed how games could be gener-
ated based on natural language descriptions [44]. We believe there
future iterations of TileCode on the web simulator or tablets could
provide a digital version of our game design printout sheet (see Fig-
ure 3) and use the natural language descriptions to auto-generate

[15] some of the game map elements based on users answers in the
game design sheet. Similarly, it would be useful to automatically
add sprites to the game map when a new rule for a sprite is cre-
ated by building on prior work on ontology-driven generation of
interactive games [73].

Progressive features disclosure. Prior work on advanced features
disclosure for programming interfaces showed that children were
able to use progressive systems such as Emile to create reasonably
sophisticated programs and gained a qualitative understanding of
kinematics in the process [41]. We want to explore further how to
enable a progressive disclosure of features in TileCode that could
account for changes from device to device (e.g., more features on
tablet & laptop vs. arcade) and show new programming features
based on the games complexity.

Limitations. It was impossible to observe every family interac-
tion with every study activity systematically, nor did every family
member speak in every family; it may be those family members
who verbalized more reasoned differently than those who verbal-
ized less. For the interactions we could observe, observing a child
reason about a specific programming concept or game behavior
did not necessarily indicate ground truth for their conceptions; for
example, it may be the case that family members were reasoning
in similar ways but were verbalizing their reasoning differently.
We also did not have data for all game description questions from
all sessions, nor did our study cover the many possible ways that
culture, community, and collaboration might have shaped sense-
making. Moreover, since our analysis was episodic rather than
temporal, family programming strategies may have been highly
variable within individual and group behavior. Our observations
were also inevitably influenced by the specific activities, instruc-
tion, and scaffolding we designed. Future work should explore other
forms of instruction and scaffolding and more diverse families to
reveal other types of family learning through game programming.

Therefore, while a cautious interpretation of our results sug-
gests that the families in our particular intervention demonstrated
diverse video-game programming strategies and a shift toward
increased computational literacy, other populations or a more gran-
ular assessment of individual parent and child knowledge could
reveal new types of programming practices and different shifts in
programming and game understanding.

Our specific activities could have predisposed families toward
particular modes of collaboration; other forms of instruction and

Conference’17, July 2017, Washington, DC, USA Druga, et al.

scaffolding might have led to different interactions and learning
outcomes. Therefore, our results are best scoped to creative, con-
structionist learning contexts and likely less relevant tomore guided
learning settings dominated by direct instruction.

5 CONCLUSION
Programming does not need to be a solitary activity, especially
when introducing children to computing through the programming
lens. We studied how family members can support each other as
they describe, design, program, and debug video games. We saw
positive engagement and advancement in various programming
practices through a four-week observational study, where we intro-
duced families to programming via low-cost device arcades using a
domain-specific language. By helping to promote computational
literacies for families, this work will better position us to respond
to a future in which computation is embedded in families’ everyday
lives.

6 SELECTION AND PARTICIPATION OF
CHILDREN

We recruited families by posting an announcement on several fam-
ily forums, social media groups, and family slack channels in North
America. A total of 120 families applied to participate in the study,
and we selected 19 families, trying to be as inclusive as possible
along the following dimensions: family structure, ethnicity, geo-
graphical location, and socio-economic background. Of those 19
families, 15 attended all four sessions. The families unable to partic-
ipate in all sessions (due to extraordinary family circumstances or
scheduling difficulties) were excluded from the final study analysis.

All parents and children over seven years old signed consent
forms agreeing to participate in our study. The forms described
the video and artifact data to be collected and how it would be
analyzed.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. 1539179, 1703304, 1836813, 2031265,
2100296, 2122950, 2137834, 2137312, and unrestricted gifts from
Microsoft, Adobe, and Google.

REFERENCES
[1] Espen J Aarseth. 1997. Cybertext: Perspectives on ergodic literature. JHU Press.
[2] Uzi Armon. 1997. Cooperative parent-child learning in a LEGO-Logo environ-

ment. Retrieved January 30 (1997), 2010.
[3] Thomas Ball, Abhijith Chatra, Peli de Halleux, Steve Hodges, Michał Moskal,

and Jacqueline Russell. 2019. Microsoft MakeCode: embedded programming for
education, in blocks and TypeScript. In Proceedings of the 2019 ACM SIGPLAN
Symposium on SPLASH-E. 7–12.

[4] T Ball, S Kao, R Knoll, and D Zuniga. 2020. TileCode: Creation of Video Games
on Gaming Handhelds. Proceedings of the 33rd Annual ACM (2020).

[5] Rahul Banerjee, Leanne Liu, Kiley Sobel, Caroline Pitt, Kung Jin Lee, Meng
Wang, Sijin Chen, Lydia Davison, Jason C Yip, Amy J Ko, et al. 2018. Empow-
ering families facing english literacy challenges to jointly engage in computer
programming. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems. 1–13.

[6] Rahul Banerjee, Jason Yip, Kung Jin Lee, and Zoran Popović. 2016. Empowering
children to rapidly author games and animations without writing code. In
Proceedings of the The 15th International Conference on Interaction Design and
Children. 230–237.

[7] Tiffany Barnes, Heather Richter, Eve Powell, Amanda Chaffin, and Alex Godwin.
2007. Game2Learn: building CS1 learning games for retention. In Proceedings
of the 12th annual SIGCSE conference on Innovation and technology in computer
science education. 121–125.

[8] Brigid Barron, Caitlin Kennedy Martin, Lori Takeuchi, and Rachel Fithian. 2009.
Parents as Learning Partners in the Development of Technological Fluency.
International Journal of Learning and Media 1, 2 (May 2009), 55–77. https:
//doi.org/10.1162/ijlm.2009.0021

[9] Ashok R. Basawapatna, Kyu Han Koh, and Alexander Repenning. 2010. Using
Scalable Game Design to Teach Computer Science from Middle School to Grad-
uate School. In Proceedings of the Fifteenth Annual Conference on Innovation and
Technology in Computer Science Education (Bilkent, Ankara, Turkey) (ITiCSE
’10). Association for Computing Machinery, New York, NY, USA, 224–228.
https://doi.org/10.1145/1822090.1822154

[10] Andrew Begel and Eric Klopfer. 2007. Starlogo TNG: An introduction to game
development. Journal of E-Learning 53, 2007 (2007), 146.

[11] Ian Bogost. 2016. Play anything: The pleasure of limits, the uses of boredom, and
the secret of games. Basic Books.

[12] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative research in psychology 3, 2 (2006), 77–101.

[13] Neil CC Brown and GregWilson. 2018. Ten quick tips for teaching programming.
PLoS computational biology 14, 4 (2018), e1006023.

[14] Margaret M Burnett and David W McIntyre. 1995. Visual programming.
COMPUTER-LOS ALAMITOS- 28 (1995), 14–14.

[15] Brock Angus Campbell and Christoph Treude. 2017. NLP2Code: Code Snippet
Content Assist via Natural Language Tasks. (Jan. 2017). arXiv:1701.05648 [cs.SE]

[16] Meng-Tzu Cheng, Jhih-Hao Chen, Sheng-Ju Chu, and Shin-Yen Chen. 2015. The
use of serious games in science education: a review of selected empirical research
from 2002 to 2013. Journal of computers in education 2, 3 (2015), 353–375.

[17] Thomas M Connolly, Elizabeth A Boyle, Ewan MacArthur, Thomas Hainey,
and James M Boyle. 2012. A systematic literature review of empirical evidence
on computer games and serious games. Computers & education 59, 2 (2012),
661–686.

[18] Kathryn Cunningham. 2020. Purpose-first Programming: A Programming
Learning Approach for Learners who Care Most About What Code Achieves. In
Proceedings of the 2020 ACM Conference on International Computing Education
Research. 348–349.

[19] Allen Cypher and David Canfield Smith. 1995. KidSim: End user programming
of simulations. In Proceedings of the SIGCHI conference on Human factors in
computing systems. 27–34.

[20] Sayamindu Dasgupta, William Hale, Andrés Monroy-Hernández, and Ben-
jamin Mako Hill. 2016. Remixing as a pathway to computational thinking.
In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative
Work & Social Computing. 1438–1449.

[21] Jill Denner, Linda Werner, and Eloy Ortiz. 2012. Computer games created by
middle school girls: Can they be used to measure understanding of computer
science concepts? Computers & Education 58, 1 (2012), 240–249.

[22] Betsy DiSalvo, Cecili Reid, and Parisa Khanipour Roshan. 2014. They can’t
find us: the search for informal CS education. In Proceedings of the 45th ACM
technical symposium on Computer science education. 487–492.

[23] Stefania Druga. 2018. Growing up with AI: Cognimates: from coding to teaching
machines. Ph.D. Dissertation. Massachusetts Institute of Technology.

[24] Stefania Druga, Fee Christoph, and Amy J. Ko. 2022. Family as a Third Space
for AI Literacies: How do children and parents learn about AI together? CHI
’22: ACM Conference on Computer-Human Interaction (2022).

[25] Stefania Druga and Amy J Ko. 2021. How do children’s perceptions of machine
intelligence change when training and coding smart programs?. In Interaction
Design and Children. ACM, Athens Greece, 49–61. https://doi.org/10.1145/
3459990.3460712

[26] Brianna Dym, Cole Rockwood, and Casey Fiesler. 2021. Learning Comput-
ing through Transformative Works: A Case Study of Game Modding. In 2021
Conference on Research in Equitable and Sustained Participation in Engineering,
Computing, and Technology (RESPECT). IEEE, 1–1.

[27] Magy Seif El-Nasr and Brian K Smith. 2006. Learning through game modding.
Computers in Entertainment (CIE) 4, 1 (2006), 7–es.

[28] Francis Emmerson. 2004. Exploring the video game as a learning tool. ERCIM
news 57 (2004), 30.

[29] Yrjö Engeström. 2015. Learning by expanding. Cambridge University Press.
[30] Sarah Esper, Stephen R Foster, and William G Griswold. 2013. CodeSpells:

embodying the metaphor of wizardry for programming. In Proceedings of the
18th ACM conference on Innovation and technology in computer science education.
249–254.

[31] Carrie A Ewin, Andrea E Reupert, Louise A McLean, and Christopher J Ewin.
2021. The impact of joint media engagement on parent–child interactions:
a systematic review. Human Behavior and Emerging Technologies 3, 2 (2021),
230–254.

[32] Sue Fitzgerald, Beth Simon, and Lynda Thomas. 2005. Strategies that students
use to trace code: an analysis based in grounded theory. In Proceedings of the

https://doi.org/10.1162/ijlm.2009.0021
https://doi.org/10.1162/ijlm.2009.0021
https://doi.org/10.1145/1822090.1822154
https://arxiv.org/abs/1701.05648
https://doi.org/10.1145/3459990.3460712
https://doi.org/10.1145/3459990.3460712

How families design and program games: a qualitative analysis of a 4-week online in-home study Conference’17, July 2017, Washington, DC, USA

first international workshop on Computing education research. 69–80.
[33] Diana Franklin, David Weintrop, Jennifer Palmer, Merijke Coenraad, Melissa

Cobian, Kristan Beck, Andrew Rasmussen, Sue Krause, Max White, Marco
Anaya, and Zachary Crenshaw. 2020. Scratch Encore: The Design and Pilot of
a Culturally-Relevant Intermediate Scratch Curriculum. In Proceedings of the
51st ACM Technical Symposium on Computer Science Education (Portland, OR,
USA) (SIGCSE ’20). Association for Computing Machinery, New York, NY, USA,
794–800.

[34] Nate Garrelts. 2014. Understanding Minecraft: essays on play, community and
possibilities. McFarland.

[35] James Paul Gee. 2007. Good video games+ good learning: Collected essays on
video games, learning, and literacy. Peter Lang.

[36] MadhuGovind, Emily Relkin, andMarina Umaschi Bers. 2020. Engaging children
and parents to code together using the ScratchJr app. Visitor Studies 23, 1 (2020),
46–65.

[37] Marianthi Grizioti and Chronis Kynigos. 2021. Children as players, modders, and
creators of simulation games: a design for making sense of complex real-world
problems. In Proceedings of the 20th ACM Conference on Interaction Design and
Children. ACM.

[38] Shuchi Grover, Marie Bienkowski, Amir Tamrakar, Behjat Siddiquie, David
Salter, and Ajay Divakaran. 2016. Multimodal analytics to study collaborative
problem solving in pair programming. In Proceedings of the Sixth International
Conference on Learning Analytics & Knowledge. 516–517.

[39] Kris D Gutiérrez, P Zitlali Morales, and Danny C Martinez. 2009. Re-mediating
literacy: Culture, difference, and learning for students from nondominant com-
munities. Review of research in education 33, 1 (2009), 212–245.

[40] Kris D Gutiérrez and Barbara Rogoff. 2003. Cultural ways of learning: Individual
traits or repertoires of practice. Educational researcher 32, 5 (2003), 19–25.

[41] Mark Guzdial. 1994. Software-realized scaffolding to facilitate programming for
science learning. Interactive learning environments 4, 1 (1994), 001–044.

[42] Brian Harvey, Daniel D Garcia, Tiffany Barnes, Nathaniel Titterton, Daniel
Armendariz, Luke Segars, Eugene Lemon, Sean Morris, and Josh Paley. 2013.
Snap!(build your own blocks). In Proceeding of the 44th ACM technical symposium
on Computer science education. 759–759.

[43] Christothea Herodotou. 2018. Mobile games and science learning: A comparative
study of 4 and 5 years old playing the game Angry Birds. British Journal of
Educational Technology 49, 1 (2018), 6–16.

[44] Michael S Hsiao. 2018. Automated Program Synthesis from Object-Oriented
Natural Language for Computer Games.. In CNL. 71–74.

[45] Chaima Jemmali, Sara Bunian, Andrea Mambretti, and Magy Seif El-Nasr. 2018.
Educational game design: an empirical study of the effects of narrative. In
Proceedings of the 13th international conference on the foundations of digital
games. 1–10.

[46] Henry Jenkins. 2004. Game design as narrative architecture. Computer 44, 3
(2004), 118–130.

[47] Yasmin B Kafai. 2012. Learning design by making games: Children’s develop-
ment of design strategies in the creation of a complex computational artifact.
In Constructionism in practice. Routledge, 87–112.

[48] Yasmin B Kafai, ML Franke, Cynthia Carter Ching, and JC Shih. 1998. Game
design as an interactive learning environment for fostering students’ and teach-
ers’ mathematical inquiry. International Journal of Computers for Mathematical
Learning 3, 2 (1998), 149–184.

[49] Yasmin Bettina Kafai, Yasmin B Kafai, and Yasmin B Kafai. 1995. Minds in play:
Computer game design as a context for children’s learning. Routledge.

[50] Juho Kahila, Teemu Valtonen, Matti Tedre, Kati Mäkitalo, and Olli Saarikoski.
2020. Children’s experiences on learning the 21st-century skills with digital
games. Games and Culture 15, 6 (2020), 685–706.

[51] Caitlin Kelleher, Randy Pausch, and Sara Kiesler. 2007. Storytelling alice moti-
vates middle school girls to learn computer programming. In Proceedings of the
SIGCHI conference on Human factors in computing systems. 1455–1464.

[52] Kyu Han Koh, Ashok Basawapatna, Vicki Bennett, and Alexander Repenning.
2010. Towards the automatic recognition of computational thinking for adaptive
visual language learning. In 2010 ieee symposium on visual languages and human-
centric computing. IEEE, 59–66.

[53] Chronis Kynigos et al. 2007. Half-baked logo microworlds as boundary objects
in integrated design. Informatics in Education-An International Journal 6, 2
(2007), 335–359.

[54] Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson,
Joyce Malyn-Smith, and Linda Werner. 2011. Computational thinking for youth
in practice. Acm Inroads 2, 1 (2011), 32–37.

[55] A Lenhart, J Kahne, E Middaugh, AR Macgill, C Evans, and J Vitak. 2008. Teens’
gaming experiences are diverse and include significant social interaction and
civic engagement. Pew Internet & American Life Project.

[56] Colleen M Lewis. 2011. Is pair programming more effective than other forms
of collaboration for young students? Computer Science Education 21, 2 (2011),
105–134.

[57] Madeleine Lexén, Erik Ljungdahl, Hanna Rydholm, and Henning Sato von Rosen.
2020. Programming Arcade Games using Natural Language-Utilizing inherent

language skills as a gentler introduction to Computational Thinking. (2020).
[58] Raymond Lister, Beth Simon, Errol Thompson, Jacqueline L Whalley, and Chris-

tine Prasad. 2006. Not seeing the forest for the trees: novice programmers and
the SOLO taxonomy. ACM SIGCSE Bulletin 38, 3 (2006), 118–122.

[59] Sonia Livingstone, Leslie Haddon, Anke Görzig, and Kjartan Ólafsson. 2011.
Risks and safety on the internet: the perspective of European children: full
findings and policy implications from the EU Kids Online survey of 9-16 year
olds and their parents in 25 countries. (2011).

[60] Matthew B MacLaurin. 2011. The design of Kodu: A tiny visual programming
language for children on the Xbox 360. In Proceedings of the 38th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages. 241–246.

[61] Jane Margolis. 2010. Stuck in the shallow end: Education, race, and computing.
MIT press.

[62] Ana Martins and Lia Oliveira. 2018. Educational video game design by 8th
graders: Investigating processes and outcomes. In European Conference on Games
Based Learning. Academic Conferences International Limited, 379–387.

[63] Cecile Meier, Jose Saorín, Alejandro Bonnet de León, and Alberto Guerrero
Cobos. 2020. Using the Roblox Video Game Engine for Creating Virtual tours
and Learning about the Sculptural Heritage. International Journal of Emerging
Technologies in Learning (iJET) 15, 20 (2020), 268–280.

[64] Rebecca Michelson, Akeiylah DeWitt, Ria Nagar, Alexis Hiniker, Jason Yip,
Sean A Munson, and Julie A Kientz. 2021. Parenting in a Pandemic: Juggling
Multiple Roles and Managing Technology Use in Family Life During COVID-19
in the United States. Proceedings of the ACM on Human-Computer Interaction 5,
CSCW2 (2021), 1–39.

[65] Matthew B Miles and A Michael Huberman. 1984. Drawing valid meaning
from qualitative data: Toward a shared craft. Educational researcher 13, 5 (1984),
20–30.

[66] Dana L Mitra. 2006. Youth as a bridge between home and school: Comparing
student voice and parent involvement as strategies for change. Education and
Urban Society 38, 4 (2006), 455–480.

[67] Luis C Moll and James B Greenberg. 1990. Creating zones of possibilities:
Combining social contexts for instruction. Vygotsky and education: Instructional
implications and applications of sociohistorical psychology (1990), 319–348.

[68] Geoff Musick, Guo Freeman, and Nathan J McNeese. 2021. Gaming as Family
Time: Digital Game Co-play in Modern Parent-Child Relationships. Proceedings
of the ACM on Human-Computer Interaction 5, CHI PLAY (2021), 1–25.

[69] Laura M Padilla-Walker, Sarah M Coyne, and Ashley M Fraser. 2012. Getting
a high-speed family connection: Associations between family media use and
family connection. Family Relations 61, 3 (2012), 426–440.

[70] J F Pane and B A Myers. 2001. Studying the language and structure in non-
programmers’ solutions to programming problems. Int. J. Hum. Comput. Stud.
(2001).

[71] Michael Quinn Patton. 1990. Qualitative evaluation and research methods. SAGE
Publications, inc.

[72] Corrina Perrone and Alexander Repenning. 1998. Graphical rewrite rule analo-
gies: avoiding the inherit or copy and paste reuse dilemma. In Proceedings. 1998
IEEE Symposium on Visual Languages (Cat. No. 98TB100254). IEEE, 40–46.

[73] Nenad Petrovic and Milorad Tosic. 2020. Ontology-Driven Generation of Inter-
active 3D Worlds. In 2020 19th International Symposium INFOTEH-JAHORINA
(INFOTEH). IEEE, 1–5.

[74] Alex Repenning. 1993. Agentsheets: a tool for building domain-oriented visual
programming environments. In Proceedings of the INTERACT’93 and CHI’93
conference on Human factors in computing systems. 142–143.

[75] Alexander Repenning. 2000. AgentSheets®: An interactive simulation environ-
ment with end-user programmable agents. Interaction (2000).

[76] Alexander Repenning. 2017. Moving Beyond Syntax: Lessons from 20 Years of
Blocks Programing in AgentSheets. J. Vis. Lang. Sentient Syst. 3, 1 (2017), 68–91.

[77] Alexander Repenning and James Ambach. 1996. Tactile programming: A unified
manipulation paradigm supporting program comprehension, composition and
sharing. In Proceedings 1996 IEEE Symposium on Visual Languages. IEEE, 102–
109.

[78] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Eve-
lyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11
(2009), 60–67.

[79] Barbara Rogoff, Behnosh Najafi, and Rebeca Mejía-Arauz. 2014. Constellations
of cultural practices across generations: Indigenous American heritage and
learning by observing and pitching in. Human Development 57, 2-3 (2014),
82–95.

[80] Ricarose Roque, Sayamindu Dasgupta, and Sasha Costanza-Chock. 2016. Chil-
dren’s civic engagement in the scratch online community. Social Sciences 5, 4
(2016), 55.

[81] Ricarose Roque, Karina Lin, and Richard Liuzzi. 2015. Engaging parents as
creative learning partners in computing. Exploring the Material Conditions of
Learning 2 (2015), 687–688.

Conference’17, July 2017, Washington, DC, USA Druga, et al.

[82] Ricarose Roque, Karina Lin, and Richard Liuzzi. 2016. “I’m Not Just a Mom”: Par-
ents Developing Multiple Roles in Creative Computing. Singapore: International
Society of the Learning Sciences.

[83] Sandra D Simpkins, Pamela E Davis-Kean, and Jacquelynne S Eccles. 2005.
Parents’ socializing behavior and children’s participation in math, science, and
computer out-of-school activities. Applied Developmental Science 9, 1 (2005),
14–30.

[84] David Canfield Smith, Allen Cypher, and Larry Tesler. 2000. Programming by
example: novice programming comes of age. Commun. ACM 43, 3 (2000), 75–81.

[85] Elliot M Soloway and Beverly Woolf. 1980. Problems, plans, and programs. ACM
SIGCSE Bulletin 12, 1 (1980), 16–24.

[86] Kurt Squire and Henry Jenkins. 2003. Harnessing the power of games in educa-
tion. Insight 3, 1 (2003), 5–33.

[87] Statista. 2021. Digital Media Report - Video Games. https://www.statista.com/
study/39310/video-games/. (Accessed on 01/13/2022).

[88] Constance A Steinkuehler. 2006. Why game (culture) studies now? Games and
culture 1, 1 (2006), 97–102.

[89] Reed Stevens and L. Takeuchi. 2011. The New Coviewing: Designing for Learning
through Joint Media Engagement. The Joan Ganz Cooney Center.

[90] Kathryn T. Stolee and Teale Fristoe. 2011. Expressing computer science concepts
through Kodu game lab. In 42nd ACM Technical Symposium on Computer science
Education (SIGCSE). 99–104.

[91] Lihui Sun, Linlin Hu, and Danhua Zhou. 2021. Improving 7th-Graders’ Computa-
tional Thinking Skills Through Unplugged Programming Activities: A Study on
the Influence of Multiple Factors. Thinking Skills and Creativity (2021), 100926.

[92] Lori Takeuchi, Reed Stevens, et al. 2011. The new coviewing: Designing for
learning through joint media engagement. In New York, NY: The Joan Ganz
Cooney Center at Sesame Workshop.

[93] Giovanni Maria Troiano, Qinyu Chen, Ángela Vargas Alba, Gregorio Robles,
Gillian Smith, Michael Cassidy, Eli Tucker-Raymond, Gillian Puttick, and Casper
Harteveld. 2020. Exploring How Game Genre in Student-Designed Games

Influences Computational Thinking Development. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA)
(CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–17.

[94] Giovanni Maria Troiano, Qinyu Chen, Ángela Vargas Alba, Gregorio Robles,
Gillian Smith, Michael Cassidy, Eli Tucker-Raymond, Gillian Puttick, and Casper
Harteveld. 2020. Exploring How Game Genre in Student-Designed Games
Influences Computational Thinking Development. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA)
(CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–17.

[95] Veena Vasudevan, Yasmin Kafai, and Lei Yang. 2015. Make, wear, play: remix
designs of wearable controllers for scratch games by middle school youth. In
Proceedings of the 14th international conference on interaction design and children.
339–342.

[96] Lev Vygotsky. 1978. Interaction between learning and development. Readings
on the development of children 23, 3 (1978), 34–41.

[97] Eliane S Wiese and Marcia C Linn. 2021. “It Must Include Rules” Middle School
Students’ Computational Thinking with Computer Models in Science. ACM
Transactions on Computer-Human Interaction (TOCHI) 28, 2 (2021), 1–41.

[98] Benjamin Xie, Dastyni Loksa, Greg L Nelson, Matthew J Davidson, Dongsheng
Dong, Harrison Kwik, Alex Hui Tan, Leanne Hwa, Min Li, and Amy J Ko. 2019.
A theory of instruction for introductory programming skills. Computer Science
Education 29, 2-3 (2019), 205–253.

[99] Seungwon Yang, Carlotta Domeniconi, Matt Revelle, Mack Sweeney, Ben U
Gelman, Chris Beckley, and Aditya Johri. 2015. Uncovering trajectories of
informal learning in large online communities of creators. In Proceedings of the
Second (2015) ACM Conference on Learning@ Scale. 131–140.

[100] Junnan Yu, Chenke Bai, and Ricarose Roque. 2020. Considering Parents in
Coding Kit Design: Understanding Parents’ Perspectives and Roles. In Proceed-
ings of the 2020 CHI Conference on Human Factors in Computing Systems. ACM,
Honolulu HI USA, 1–14. https://doi.org/10.1145/3313831.3376130

https://www.statista.com/study/39310/video-games/
https://www.statista.com/study/39310/video-games/
https://doi.org/10.1145/3313831.3376130

	Abstract
	1 Introduction
	2 Method
	2.1 Participants
	2.2 Study Procedure
	2.3 Study Materials
	2.4 Data Collection and Analysis

	3 Results
	3.1 Family Joint Engagement in Game Programming
	3.2 Problem formulation: Post Game Descriptions & Game Design
	3.3 Solution Expression: From Game Concept to Code
	3.4 Solution Expression: From Game Mechanics to Programming Patterns
	3.5 Execution & Evaluation: Post Game Descriptions & Quiz
	3.6 Computational Analysis of Family Games

	4 Discussion
	5 Conclusion
	6 Selection and Participation of Children
	Acknowledgments
	References

