Interest-Driven Creative Programming for Youth

STEFANIA DRUGA

This paper provides an overview of how we might work toward interest-driven creative programming for youth by using
design-based research. I synthesize and discuss different conceptions of what it means to design creativity supports for
youth, surfacing open questions and critiquing each perspective. I identify ways in which cognitivist and constructionist
approaches to youth creative programming present challenges and opportunities and distinguish promising theoretical
frameworks for my research. Finally, I propose designing a system that allows children to fully and fluently express

themselves and their vision via creative programming in a diverse set of microworlds.

1 CREATIVE THINKING WITH AND FOR YOUTH: PAST, PRESENT AND FUTURE

For over ten years now, [have been intrigued and inspired by the following question: “How do we inspire children to
build a better tomorrow and give them the tools to do it?” I tried to tackle this question in multiple ways by playing
the role of educator, community organizer, researcher, tool designer, and developer. This question could be seen as
contributing to a broader global effort to prepare youth with skills for the 21st century [96]. These efforts are even more
critical now after more than one year of pandemic lock-down. How do we prepare our youth for the unknown? How do
we escape the confines of our educational background confines when doing so? [77] How best to critically make use of
ever-evolving technologies that transform every aspect of our lived experiences without falling into techno-progressive
traps?[14] In this context, I see a unique and significant role for youth’s creative thinking [130] as a driver for constant
adaptation, life-long learning, problem-solving, inclusion, and openness. Suppose the altruistic and meaningful future
argument is not sufficient. In that case, the need for creativity education for future generations is ever-present now
with advances in automation and Al It represents a key differential factor in the competitive global economy [126].

Human creativity moves hand in hand with technology and geo-political context. Guilford started the first wave of
creativity research in 1958 [69]. During World War I and II, he researched intellectual abilities for the Air Force personnel.
His project continued to receive generous financial support from the US Navy and Air Force. It allowed Guilford to
expand the research on intelligence he conducted with youth!) and propose his Structure of Intellect Theory, giving
birth to an entire generation of studies on creativity and learning. The second wave in creativity research was inspired
by the new design guidelines for creative support tools proposed by Shneiderman in 2007 amid digital technology
adoption [143]. We are now seeing the third wave of research on creativity support tools, primarily motivated by new
technological affordances in the space of machine learning and Al technologies [62].

For youth, creativity is driven by imagination and play and is both practical and conceptual. What youth create today
depends on the tools and materials that are accessible to them. From Froebel gifts [3] to LEGO Mindstorms [5] and
creative learning tools such as Scratch [112], notable efforts have been made in creative learning and creative coding
for youth. These initiatives represent a counter-culture response to the dominant instructional education instituted
during the industrial revolution [64]. Creative learning ambitions flourished primarily outside of traditional school
classrooms. The constructionist vision focused on two critical aspects of creativity for children: allowing them to tinker,

construct, debug, and modify ideas [137] and encouraging them to collaborate in communities of practice [26, 80].

!these were Stanford-Binet Intelligence tests [147]

Author’s address: Stefania Druga.

2 Stefania Druga

Card Slot

Neo-Pixel

Fig. 1. Examples of creative coding in the wild: 1.Legends installation [37], 2.Museomix [7], 3.Dynamicland [2], 4 Humming Box [38]

With time the success of these projects also drove change in the way creative thinking and creative coding are taught
in schools, with more initiatives focused on project-based learning and coding in schools [131, 136]. However, questions
remain as to how best to balance structure vs. agency in programming for youth [32]. As youth are now growing
up with computers, apps, and Al our framing, understanding, and development of intelligence and creative thinking
are again under scrutiny. Recognizing that every child is born with immense natural talents [63] and innate creative
potential [153], how do we design new learning opportunities and tools for creative thinking that allow children’s
creativity to flourish in an era of constant technological change and consumption? Based on research I conducted in the
past four years on Al education and literacy for youth [52] , I see a unique opportunity for designing new forms of
creative coding for youth that involve authentic [61], personalized, and dynamic creative collaboration with virtual
agents. With this current research proposal, I aim to frame creative coding for youth from a stance of epistemological
pluralism [152], recognizing “the validity of multiple ways of knowing and thinking .” I believe that future programming
tutorials should balance introducing children to new computing topics (“level up”) while also leveraging children’s
creative engagement as a way to enable self-expression and to re-imagine computing norms.

Engaging in creative expression with code is a social phenomenon where learning does not happen in isolation.
Children are working in a social context even if they create individual coding projects. In this context, I believe it is
essential to take an ecological approach when developing my research contributions and consider my work’s short and
long-term implications via an ecological systems lens [33]. To this end, I pose the following research question: How

might learners engage in self-directed creative learning coding activities when collaborating with an adaptive system?

Interest-Driven Creative Programming for Youth 3

The first step in articulating and this research direction is to understand different creative processes children use
when creating programs with a limited dynamic vocabulary based on their interests, working both on open-ended [150]
vs. closed-ended projects [100]. I wish my research contribute rich and "thick" [65] descriptions of multiple new ways
in which youth now collaborate with Al for creative coding and propose new pathways to engage diverse learners in
creative thinking and coding (see fig.1. I contemplate the future of creative coding for youth as a place where creativity
is a language on its own, just like Romanian, Python, or Math. It creates a vocabulary of heuristics, objects to think with
[151] and processes that inherently allow children to express their creative ideas with code freely. Imagine a collection
of dynamic code grammars and interfaces adapting to children’s skills, wants, and content interests. In this work, I aim
to leverage children’s voices and creative processes through co-design at every step of the process.

We now recognize that knowledge is advanced rather than accumulated; it is dynamic, taking in new and discarding
outdated “epistemic artifacts.”[139] Children are uniquely positioned to help advance to move from an information
society to a creative society [133]. To help inform the design of this study, I consider below creativity supports, cognitive
vs. constructionist theories of programming and present a series of design guidelines for interest-based creativity

supports for youth .

2 BEYOND CREATIVITY SUPPORT: EXPRESSION FLUENCY

Creativity Support Tools (CSTs) were first introduced by Ben Shneiderman in 2002, building on creative problem-solving
methodologies [40] and social creativity [41]. He defined CSTs as tools that enable people to collect, relate, create and
donate digital works. Shneiderman noted the gap in creativity research to include digital artifacts and encouraged
the designers of programming interfaces, interactive tools, and rich social environments to enable more people to
be more creative. The diversity of existing definitions of creativity is a testament that we only understand a partial
approximation of the complex cognitive and behavioral system at play when people engage in creative acts [142, 143].
As a result, the collection of CSTs currently being developed in the Human-computer interaction (HCI) community is
highly diverse, and so is the type of creative support they provide.

A recent systematic literature review study sheds light on the diversity of approaches to designing CSTs [62].
The study classification of CSTs found six significant categories of support in the creative process organized around:
pre-ideation, idea generation, evaluation, implementation, iteration, and reflection (see table. 1). In their systematic
review, Frich et al.showed that current CSTs are by enlarging driven by what we can measure or what we can build, and
fail to become widely used or long-lived, with only 4% of the tools they analyzed is still available to the public. Their
analysis of 143 ACM papers between 1999 and 2018 revealed that a majority of CSTs are digital (92%), low-fidelity is
more recent (since 2009) and represent only 17% of tools, most of the tools focus on ideation (45%) and implementation
(41%), and evaluation (18%), almost half of the tools are low complexity (48%). From the sampled CSTs, 38% did consider
the level of creative experience or expertise of their target audience, and works supporting iteration and reflection are
only marginally present.

To define conceptions of "support” in programming for youth, I draw on the previous systematic literature review
and present a series of recent CSTs for youth creative learning (see table. 1). Based on this review, I describe several

cross-cutting open questions and future directions below.

2.1 Cross-cutting Open Questions and Future Directions

2.1.1 Personalization of Creative Process Support. Barbot et al. proposed an “optimal-fit” view of creativity. The

creativity of a product depends on the fit between a creative task characteristic and a person’s profile of resources

Stefania Druga

Category Level Definition Example Projects
Low One or two features Let’s chance[46]
Complexity Medium Semi-complex system danceON[125]
High Entire system Mosaic[88]
Lo-fi mock-ups Paper/WoOz Yolo[12]
. Codeopticon[70]
Maturity Prototype Working prototype Stornyawer[lSS]
Public release Final product Scratch([8]
Pre-ideation Background research Idea Wiki[4]
Idea generation Ideation or generation Yolo[12], Let’s chance[46]
Creative Evaluation Critique of outcomes Scratch([8]
Implementation Support building Shadow Draw[103]
process Iteration Support iterating Mosaic[88], Scratch[8]
. Support reflection ScratchEncore [60
giesion or E)irc))cumentation Idea Wiki[4][:
Novice New learners Scratch Microworlds[150]
User Group Casual user Medium experience Yolo[12]
Expert Advanced experience 3Buddy[110]
Unspecified Not defined in the tool Mosaic[88]
Individual Focus on one person AgentCubes [.6]
Drawing apprentice[43]
Collaborative Support social Scratch[8], Dynamicland[2]
Collaboration with people collaboration MOOSE crossing[34]
Support Collaborative Co-creative with Creative Sketching[84]
with technology system/agent 3Buddy[110]

Table 1. Classification of HCI Creativity Support Tools (CSTs) for youth building on review from Frich et al. [62]

Level 28. Are the animals infected or sick?

code

Orginai Code | Clear Code
function organizelt (objectName)

and thingN

arab thingName

)
organize()

“position
isick

position

Figure 1: A screenshot of the Gidget introductory programming game.

gidget @

|l@e= sketch

0 82 results for "sketch"

oo| *

0 |«

e

(a) Pen Strokes

(b) Pen Position

&0

(c) Shadow

(d) Output

Fig. 2. CST Optimal Fit Process Examples: Gidget [100] (left), Mosaic [88] (right) and ShadowDraw [104] (bottom)

Interest-Driven Creative Programming for Youth 5

underlying creativity in that task [18]. I present three different CSTs for youth that tackle this question of optimal fit
differently: Gidget, Mosaic, and ShadowDraw.

Gidget: Personalization of CST feedback. Michael Lee built and evaluated a videogame (Gidget) that teaches program-
ming. One of his findings is that this game could improve student retention by making the programming language
“personable.” He created an avatar for the computer, which looked sad when encountering an error, and happy when
the program worked correctly. His findings showed that learners engaged in the game more when using the game
version with the personable avatar [100].

Mosaic: Curator vs. Creator Mosaic is an online creative community where sharing process, rather than showcasing
finished projects, is the primary method of sharing creative work. Illustrators are encouraged to document and share
work-in-progress snapshots [88]. This design direction builds on the work of Dow, who shows that parallel prototyping
in creative work leads to better design results and increased self-efficacy [51].

ShadowDraw: In-Situ Adaptive Guidance ShadowDraw automatically blends relevant images from an extensive
database to construct the shadows. Based on this dataset, the system dynamically adapts to the user’s drawings in
real-time and produces suggestions accordingly. When authors tested their approach in user studies, they found that
creators who used their system produced more realistically and proportioned line drawings and wished to continue
using the tool after the study [104].

From these examples, we see the designers tackled the issue of creative process optimal fit in different ways, by either
trying to personalize the support across affective, documentation, and curation or skill dimensions. These examples
point to new possibilities in terms of technical affordances for CSTs’ personalization and providing creators with the
choice of the type of creative support they might want to receive, like in the Mosaic example.

However, personalization CSTs could come at a cost; the pitfalls in personalizing mobile apps for children serve
as a cautionary tale. The highly personalized app identity for youth is multifaceted, outward-facing, and constrained
primarily by the programming decisions of the app designer [63]. Such approaches risk locking in children’s creative
potential by framing creative expression through the lens of the designer’s creative values [95]. In order to avoid such
pitfalls, future CSTs that want to support a diverse community of creators should design and decide with them how

best to support a wide variety of creative practices.

2.1.2 Interest-Based Programming CSTs. As pointed out by Frich et al., much of CSTs are disconnected from the creators’
daily practices [62]. In the context of computing education, youth want their programming learning to be authentic
[141]. Authenticity in creative coding could involve providing the proper media supports like in the case of the danceON
project [125] and the opportunity to work on microworlds with curated programming activities, such as fashion or
music [150] (see fig.3).

Lave and Wenger point out that we compare ourselves to experts in the community of practice that we hope to join
[97]. In this context, there is an opportunity to design CSTs that support a wide diversity of programming interests and
create, as Dhariwal Shruti and Manuj describe it: “clay-like computational material that children can dynamically shape
and tinker within real-time to imagine and construct countless creative, generative, artistic, mathematical, playful, and
serious possibilities of probability in their minds and their creations.’[46] By creating new programming building blocks,
we will build expertise around creative coding. This would also encourage the growth of programming communities

which are authentic, inviting, and supportive for a diverse group of learners and creators [54].

2.1.3 Many Ways of Asking & Receiving Support. In the field of Human-Robot Interaction(HRI), several studies have

shown that having embodied agents, such as robots or connected toys, could lead to increased engagement and learning

6 Stefania Druga

(b) Black Lives Matter

hat-a’ hat-b} hat-c| hat-d
-~

Fig. 4. Many Ways of Asking & Receiving Support: StoryDrawer [155] (top), Tega robot (bottom) [123]

effects for youth [11, 123]. Incorporating physical components in CSTs, such as StoryDrawer providing an idea button
[155], could make it easier for children to ask or receive support from the system (see fig. 4).
In digital sketching [84] and game design [110], Karimi and Lucas show different ways for creators to ask for help

when interacting with Al-powered CSTs. They provide slider controls where creators can vary the degree to which

Interest-Driven Creative Programming for Youth 7

F G

¢ Nevios=

Figure 1: The Creative Sketching Partner user interface.

Fig. 5. Many Ways of Asking & Receiving Support: Creative Sketching Partner [84] (left), 3Buddy Game Design [110] (right)

they want the system to support them (i.e., visual similarity 10%). These two CSTs also control the various aspects of
the creative process support (i.e., visually vs. conceptually) (see fig. 5). These examples suggest different ways in which
children might work together with their CSTs and engage in co-creativity with intelligent systems [83].

When peaking into the world of CSTs for youth, we recognize several tensions around providing support without
locking in creators. I identified opportunities around designing CSTs that provide an optimal fit to creators’ skills and
needs, integrate creators’ interests and media preferences, and make it easy for creators to ask and receive help from

the system.

2.2 Looking forward: a story about CSTs in the wild

To better understand how CSTs apply to the phenomenon I am aiming to study, let us imagine the following situation:
Marie, a 7.6 years old girl, interacts with Ott, her digital creative coding partner:

e Ott: "What is on your mind, Marie? What would you like to make today?"

e Marie: "I was wondering why tigers fly. Do you know ?" 2

Depending on our definition of creativity, we might choose to interpret this situation in many different ways and
design a system that would respond accordingly to our inherited views of the creative process and Marie’s intentions
and mental process.

Based on Guilford’s structure of intellect theory and definitions of creativity (p. 82), learning (p. 54), and information
(p. 55), we would try to assess if Marie’s question represents a change in her behavior based on recent information
she discovered. She might have processed this information consciously or subconsciously. We would design Ott to ask
further questions to determine if her question’s semantic content is a unit, transformation, or implication resulting in
divergent production, convergent production, memory retrieval, cognitive processing, or evaluation. Ott would ask
different questions of figural, symbolic, semantic, and behavioral nature over time to triangulate via factorial analysis
Marie’s creative personality (p. 77) and decided how best to respond [69]. Well, all of that is not very easy, so maybe Ott
would ask Marie to use circles as a prompt for different drawings 3, draw for 2 minutes and then evaluate her drawings
based on fluency, flexibility, originality, and elaboration. Marie would probably say she does not care about circles, and

she wants to figure out why tigers fly.

This question is inspired by many other similar questions children expressed in my youth workshops.
3This is an actual creativity measure from Torrance tests [149]

8 Stefania Druga

The goal of using this anecdote is to make a significant point. Our current definitions of creativity, either as divergent
production, lateral thinking, contextual composition, possibility thinking, fail to consider how sometimes we are not
able to assess if children are in the process of developing their creative voice. Marie might be speaking out loud some of
her imaginative p-prims [50] or try to engage in pretend-play. When our theoretical frameworks establish measures of
novelty and originality determined by adults, childrens’ bids for play and explorations are ignored or suppressed.

A valuable inspiration for how we might approach this phenomenon differently comes from the philosophy and
pedagogy of Reggio Emilia, emphasizing listening, documentation, and critical reflection [59]. The following principles

guide their community:

o Creative values are strength & power of kids, pedagogy of listening.
o Creative relationships are attentive and respectful.
o Creative environments are physical and emotional.

o Behavior and dispositions matter, support holistic learning and creative thinking.

Current efforts on creative learning for youth are driven by what we can measure, like the prompt of drawing circles
from the above example. Our current creativity support designs fail to support creative expression in the wild. There
are still many valuable lessons we can learn from existing efforts in the field of creativity support. However, I believe it
is essential to acknowledge how little we know and the limitations of our current understanding of creativity.

A future agenda on creativity with and for youth will need to actively and genuinely respect and listen to children’s
voices in the process of co-designing new forms of creative coding in digital, physical, and mixed mediums. Beyond the
metaphor of “support,’ we have an opportunity to embrace the metaphor of "collaboration" that positions both child

and agent on equal footing in the act of creative expression (with code and beyond) [45].

3 COGNITIVIST VS CONSTRUCTIONIST APPROACHES TO YOUTH PROGRAMMING

Cognitivism is a learning theory that focuses on the processes involved in learning and knowledge development
rather than studying behavior. Cognitivism focuses more on the internal processes of learning and the connections in
people’s minds during learning. Cognitivism aims to open and understand “the black box” of the mind by focusing
on comprehension, abstraction, analysis, synthesis, generalization, evaluation, decision-making, problem-solving and
creative thinking. The learner is viewed as an agent that processes information and develops new knowledge in a
continuous process. Knowledge in cognitivism is formalized as schema or symbolic mental constructions, and learning
is defined as a change in a learner’s schemata.

Ulric Neisser was the “father of cognitive psychology” and an advocate for ecological approaches to cognitive research
with the publication of Cognitive Psychology (1967), where he presents research concerning perception, problem-solving,
attention, remembering, and pattern recognition [116]. Jean Piaget proposed the constructivism theory, which defined
learning as a process of association between new information and stored knowledge. Jean Piaget first identified two
processes by which these associations enter memory, assimilation and accommodation [128]. He conducted pioneering
research with youth and put forth his four stages of cognitive development (sensorimotor, preoperational, concrete
operational, and formal operational), which is still being used and referenced when learning is discussed and researched.

In K-12 education, one of the theories of cognitivism that is widely used is Bloom’s taxonomies of learning objectives
[27]. Bloom and his colleagues claimed that there are three critical domains of learning: cognitive(thinking), affective
(feeling) psycho-motor(doing). Each of these domains is related to developing different learning skills or ways of

learning for youth. Cognitive approaches to learning in k-12 programming education encourage focusing on teaching

Interest-Driven Creative Programming for Youth 9

learners how to learn, developing more robust or new mental processes for future learning, and developing a more

profound and constantly changing understanding of concepts and ideas.

3.1 Papert’s constructionism v.s. Piaget’s constructivism

“We understand “constructionism” as including, but going beyond, what Piaget would call “constructivism”.
The word with the v expresses the theory that knowledge is built by the learner, not supplied by the
teacher. The word with the n expresses the further idea that this happens especially felicitously when the
learner is engaged in the construction of something external or at least shareable, a sand castle, a machine,
a computer program, a book. This leads us to a model of using a cycle of internalization of what is outside,

then externalization of what is inside” — Seymour Papert, 1991 [122].

In his seminal 1981 book, Mindstorms, Papert proposes using computing to create different micro-worlds for
programming learning based on children’s interests (i.e., “Mathland”). Papert suggested that when learners make a
mistake (a bug) in their Logo programs, it would likely reflect a misconception in their thinking about the underlying
mathematics. He proposed that when learners debug their programs, they also correct their thinking bugs [120]. His
vision and Logo, the first programming language for kids he invented [121] inspired generations of constructionist

designs and projects.

3.2 Cognitivist examples

Cognitivism defines programming as the act of assembling a set of symbols representing computational actions.
Learners can express their intentions to the machine using these symbols [72]. In this context, a cognitivist approach to
programming for youth would mean focusing on supporting learners to develop new or more robust mental processes
for future learning and developing a deeper understanding of computing concepts [50, 73].

Many cognitivist efforts in computing education research are designed around the hypothesis that a primary barrier in
learning to program lies in the mechanics of writing programs and propose frameworks for programming understanding
[92, 106, 118], tracing [117], debugging [66, 89].

Letovsky proposed the basis of program understanding and described how it involves processes at different levels of
temporal resolution [106]. In order to support learners in overcoming their barriers in programming [92], cognitivism
created interactive representations of program behavior (i.e., [47, 91]).Benedict du Boulay also contributes the idea
of presenting learners with a notional machine (see fig.6), defined as a mental model of what a computer can do [28].
Notional machines as abstract execution models, have risen to the point of gaining acceptance as a useful devices in
computing education [47].

Recent studies showed that developing a notional machine requires the ability to both read and write programs.
Raymond Lister suggested that reading programs is a necessary developmental stage to writing programs and predicting
the computer’s behavior for a given program [107].

A growing body of work is showing the effectiveness of well-designed educational games to support student learning
in computing. The first of these to show significant learning benefits was Wu’s Castle which taught iteration [56].
The results from Michael Lee and Amy Ko’s work on Gidget are promising [100]. There is strong evidence that asking
students to play an educational video game is more likely to lead to learning than doing a programming assignment
[102]. More recently, Lee has also shown that auto-generated game levels increase novice programmers’ engagement

[98] and that providing animated hints help novices complete more levels in an educational programming game [101].

10 Stefania Druga

Notional
Machine

Mental Model

Misunderstanding

Student/Programmer
Computer

Fig. 6. Notional machine: an abstract model of an execution environment. Source image Dickson et al 2020 [47]

3.3 Constructionist examples

Constructionists like Papert, Resnick, and Eisenberg describe programming as a process where the learner’s interaction
with her program could transform how she thought about the program’s domain [121, 134]. The process they describe
is much like what Bereiter and Scardamalia had also seen working when a writer interacted with her text [139]. Resnick
also emphasizes the importance of fluency in creative coding, defined as: “the ability to express one’s-self ideas with

code in a similar way we do it with the written text” (p. 48 [136]).

Fig. 7. Creative Learning Spiral presented by Mitchel Resnick in 2007 [132] remixed online [9]

Constructionist approaches to programming learning have resulted in the development of widely used tools such as
Scratch [112], which is the largest platform for youth coding with more than 68 million users and is being used in formal
and informal learning settings. Resnick invites designers, educators, and parents to consider creative learning with

programming and calls for using coding to sow the seeds of a more creative society [133]. He envisions creative coding

Interest-Driven Creative Programming for Youth 11

as an iterative cycle where learners imagine, create, plays, share, reflect (see fig.7) [132]. His approach to programming
for children is inspired by how children naturally learn in kindergarten and Froebel’s approach to learning [129].
Constructionism also inspired and contributed to the birth and development of the maker movement [24, 26], from
initial LEGO Mindstorm construction kits to the a myriad of physical computing prototypes [25]. Yasmin Kafai was
one of the pioneers who expanded the constructionist model into programming for science learning [81]. Over the
years, Kafai has had children build programs to learn and create in various media for a variety of learning purposes.
She had students construct video games [80], craftwork [82], and e-textiles [78]. More recently she called for moving

from focusing primarily on computational thinking, and consider computational participation in K-12 education [79].

3.4 Best of both worlds?

Both cognitivist and constructionists recognize programming for youth as a form of fluency where learners can express
their ideas and achieve their goals with code but take different approaches to achieve this [72, 131]. The difference
between the focus on the logic model in cognitivism and the focus on tinkering, craft, and creative expression in
constructionism often lead to very different approaches in designing tools and learning activities for computing learning.
Karen Brennan studied the issues of balancing structure and agency in computational creation, in and out of school
[1, 32], recognizing existing challenges in defining computational thinking in a way where learner’s agency is respected
when including creative coding in classrooms [30].

The Scratch success is a testimony for the importance of emphasizing and designing for children’s agency. It
showed that collaborative online communities are powerful engines for children learning. However, it also showed that
sometimes collaboration comes at the cost of originality. Most importantly, constructionist approaches to programming
learning recognize the importance of shifting power from teachers to learners and providing multiple pathways to
encourage computational fluency and personal expression. The importance of putting the learner’s interest at the center
is starting to trickle in the cognitivist world as well. However, there is much work to be done to change the culture of
learning of the settings in which such work is carried. An authentic computing pedagogy focused on learners’ interests
and passions would have to suspend the current disbelief in constructionist approaches, often expressed as “Looks like
they are having fun but are they learning?”[127]

Opportunities to engage both social and cognitive aspects of children’s forays into the computing world are ever
needed and crucial now that computing permeates all aspects of our lives. The current tensions between cognitivist and
constructionist approaches to programming learning are reminiscent of an older and more significant divide between
humanities and science. C.P. Snow wrote the Two Cultures book based on his experience as a British science advisor
during World War II. In his book, he describes the split he saw between the humanities and science views of the world
[144].

He argued that scientists needed to understand more of the moral and cultural issues that the humanities perspective
offered. He critiqued humanities scholars for not appreciating the power and insights of science. Snow saw a similar
split because too few people learn to compute. In order to expand and increase participation in computing for youth,
their families, and communities, we need to question the existing norms of computing learning for youth. This would
allow our community of scholars to address equity issues, expand participation, promote a critical understanding of new
automated technologies. To this end, both personally relevant explorations and high-quality, engaging learner-centered

instruction are necessary and should be elegantly balanced.

12 Stefania Druga

4 DESIGN GUIDELINES

Based on the synthesis of existing CSTs work, with a primarily constructionist lens, I build on the design principles
for tools to support creative thinking proposed by Mitchel Resnick, Brad Myers, Kumiyo Nakakoji, Ben Shneiderman,
Randy Pausch, Ted Selker, and Mike Eisenberg and propose the following designs guidelines for future CSTs for youth

programming:

(1) Support Authentic learning: encourage children to work on relevant topics and engage in authentic creative
practices with their family and community. The tool should encourage children to work on projects they are
passionate about and provide ways to share their work with their community [42, 48, 49, 58, 60, 150?].

2

~

Support Experimentation: support children to start by exploring, experimenting, and thinking with digital
and physical materials. The CST’s interface and activities should be designed to encourage rapid experimentation
and prototyping cycles [94, 113, 137].

(3) Low floors, Wide Walls, and High Ceilings: include elements and features that are easy for kids to under-
stand(low floors), but general enough to support diverse uses (wide walls), and additional ways for children to
customize and define new features (high ceilings) [120, 135].

(4) Design for Collaborative Scaffolding: allow children to do both individual and collaborative activities (i.e.,
remix a prior curated project, take turns with tool support system)) [31, 68, 80, 138].

(5) Design for Playful Debugging: children should be able to learn to break and fix things on the platform,
provide ways for them to do playful debugging (e.g., fix a prior broken project, trick the tool support system)
[74, 90, 99, 100].

(6) Choose Black Boxes Carefully: one of the most critical decisions for CST design is designing the“primitive
elements” that users will manipulate. This design will determine what ideas users can explore with the tool — and
what ideas are abstracted from view. One promising direction in the programming language design for children
is to create dynamic primitives that can adapt based on child needs, learning, and project domain [71, 75, 93].

(7) Explainable system: allow children to see how the agent (or the computer) sees the world or makes decisions
in the tool, so they can better understand how it works and set up their expectations accordingly [13, 19, 20, 109,
146, 154].

(8) Multimodality: allow children to express in different modalities (e.g., drawing, speaking, building some-
thing)how they imagine the future of these technologies and build features of the platform to match or challenge
their expectations [39, 76, 111].

(9) CSTs an “Object to think with”: encourage reflection on the artifact and process and enable children to
document various stages of their creative process and also discover other work in progress [10, 105, 140, 145].

(10) Design for designers: enable others to design, create, and invent things using the tool. Support sketching-like
interactions with the tool, encourage re-purpose and interface modifications, support creative self-efficacy
[16, 17, 21, 22, 85, 115, 119].

5 PROPOSED STUDY DESIGN: PWOZ WITH CODE PLAYGROUND

Code Playground # is an interest-driven creative programming platform that aims to enable children (ages 7-12 years

old) to engage in self-directed creative coding activities. With the iterative and participatory design of this platform,

4working title

Interest-Driven Creative Programming for Youth 13

I aim to answer the following research question: How might learners engage in self-directed creative learning coding

activities when collaborating with an adaptive system?

5.1 Theoretical framing: Creative self-efficacy & Theory of Mind

Recent CSTs in the field of equitable computational tools for artists [87] or embodied Al-art collaboration [15] are
building on the cognitive theory of creativity support [44]. This theory aims to understand novices and their creative
barriers: fear of failure, time commitment, and lack of skill. To date, this theory has been used for the design of more
than 18 CSTs and it may present opportunities to understand children’s creative process better. However, I believe it

approaches children’s creative expression from a deficit perspective and is more suitable for close-ended CSTs

"Innovativeness requires an unshakable sense of efficacy to persist in creative endeavors when they
demand prolonged investment of time and effort, progress is discouragingly slow, the outcome is highly
uncertain, and creations are socially devalued when they are too incongruent with pre-existing ways."
(Bandura, 1997, p. 239, [17])

In turn, the creative self-efficacy theory [148], derived from Bandura’s more general concept of self-efficacy [17],
allows CST designers to focus on children’s beliefs that he or she can successfully perform in a specific creative process.
This approach also builds on the “mini-c” creativity from the Four-C model of creativity. The "mini-c" describes the level
of creative production at which children are generating new knowledge for themselves [86]. My choice for self-efficacy
theory also builds on my reflection of the future of computing learning for youth and the importance of considering
both social and cognitive aspects of learning presented in the previous section.

We also know children’s collaboration with other children or adults is very much supported by their theory of mind
and ability to understand and assume what the other person might be thinking [35]. A recent study proposed a mutual
theory of mind framing when designing a natural long-term interaction (12 weeks) between a virtual teaching assistant
and a class of 376 students from an online master of computer science program at Georgia Tech. The study found
that students’ perception of voice assistant anthropomorphism and intelligence changed significantly over time and
emphasized the need for adaptability and the importance of understanding human-human social interactions as a way
to improve human-Al interaction [154]. There is also prior work done with social robots that point in the same direction
[67].

In our recent research, we analyzed longitudinal interaction with various intelligent technologies. We found that
programmability plays an essential role in shifting the agency from intelligent technology to children. Children’s
hypotheses about Al agents the ways they test them were highly diverse [53].

Building on our prior work on creative coding and Al literacy for kids, as part of future research, I aim to extend
the development of the Cognimates platform I created and developed since 2018. The future goal is to include various
possibilities to collaborate with autonomous agents (called Cognimates) in the context of curated micro-worlds that
will be designed to match the diverse children’s interests, such as intelligent games or drawing with code. The first
step in this direction is to co-design a series of prototypes of the platform interface and coding activities with children.
Moreover, I see a unique opportunity in engaging children themselves to play the role of the Cognimate for other
children and therefore emulate and embody the creative and learning supports they would like to receive(if any). I plan
to build a simplified version of the Cognimates platform for this study design, which is titled Code Playground in the

context of this paper.

14 Stefania Druga

5.2 Code Playground Platform

In this section, I describe the Code Playground platform proposal and address the design guidelines I identified in this
paper, which will be referenced as D1-D10.

5.2.1 Interaction flow. Imagine Jay, an eight-year-old girl, visiting the Code Playground platform for the first time.
When landing on the welcome page (see fig.8) where she will be able to explore and discover a curated collection of
coding projects grouped in the following categories: choose your adventure, smart games, and interactive storytelling
(D1, D2, D3). Jay would be able to interact with any of the projects ("Modify a project" option D4, D5) before deciding
if she wants to modify them, or she would be able to start her project either by getting an idea prompt ("Give me a
prompt” option D8, D9) or not ("DIY" option D10). Before Jay starts coding, she will be prompted to select an agent she
could collaborate with. Jay would be able to pick different avatars showing a robot, a pet, or a child or decide to create
her design for the agent avatar (see the right image in fig 8, D10). Once Jay will select her agent, she will see the Code
Playground programming interface (see fig 10). The agent would also be present on this interface and will quickly tell
her with text on the screen; it is there if she wants to collaborate, pointing her to the options at the bottom of the page
(see box E in fig 10, D7). Jay would slide the robot button on the page to ask for ideas, hints, help, wild card effects, or
code examples from other children while coding (D1, D4, D9). She will also choose not to have any interaction with the
agent and place the robot button on the stop option (D10). After Jay finishes her project or when she decides to stop,
she would be prompted to provide quick feedback on her project and her agent (see fig.11, D10). She would also record

reflections at any steps of her programming process or the end (see fig. 12, D10.

Pick your Cognimate /7"

e N

Fig. 8. Code Playground landing page(left) and agent selection page (right)

5.3 Proposed Study Procedure

In the following, I describe my proposed study procedure by describing the selection and participation of children,

methodology, study materials, data collection, and analysis.

5.3.1 Selection and Participation of Children. For my user study, I plan to recruit a diverse population of children from
the Seattle Area. In total, I aim to recruit 20 children of ages 7-12 years old who will work together in 10 pairs as wizards
and creators. Each child will complete an intake questionnaire (Demographics, NARS, PSS) and be asked to describe her
or his programming experience and will be randomly assigned to a wizard or creator role. The study will take place on

the University of Washington campus.

Interest-Driven Creative Programming for Youth 15

All Activities

[[cotegoies | coungsatoges [motings ~

Choose your own adventure [0l

/\/\/\
&/
\/\/\/

‘Wwild Card Previous project 1 Popular project
Play Game Play Game Play Game
Smart Games é?’é\ (-] Interactive storytelling w
\@ L Ot
e T — _
N y N y \
/ \ / \ / /
() \
@ (B [u &
\ \
\ \
A A N N
Give me a prompt Modify a project Iy oy
SonGome s Game s

Fig. 9. Activities pages

5.3.2 Methodology. Stemming from a human-centered approach, I will use a Participatory Wizard of Oz (PWoz)
interaction method that engaged children as wizards or creators in a uniquely transparent interaction (see fig.15).
Bjorling et al. recently proposed the PWoz method, where the typical Wizard of Oz (WoZ) method where the researcher
operates a system without the participant’s awareness. Similar to the the suggested framework of Druin [55] where
child participants were placed in multiple roles, e.g., user, tester, informant Borling proposes and user study design

where the participants themselves could either play the role of the wizard or user [23].

5.3.3 Study Materials: Creative Micro-worlds, Creative Prompts, Self-Perception Game. In this section, I present the
creative activities I will use in my study and the perception game we used to measure children’s shift in perceptions.
Creative Micro-worlds To help children imagine possibilities without fixing a starter program, I propose to curate

"o

themed micro-worlds, such as “Interactive storytelling”, “Smart Game", or “Choose your own adventure" 9. A micro-world
comprises just a few blocks carefully chosen to express programs that are sufficiently varied to engage kids’ creativity.
For example, Figure 13 shows a "Conversation" micro-world consisting of commands that prompt a user for input,
switch a character’s costume, speak something, and check input for a condition. This small set of commands can be

assembled into a diversity of programs, such as the example in Figure 14, which also invokes a text classifier using blocks

16

when [clicked

switch costume to (waiting <

R

r’ Cme v amenrans o vam

TN

else

it [Recoanise text (answer)iaver = [T (o) hen

E_ﬁ

CICIEIEIE

it

Qﬁ‘Cbsrwvam sad v})

|'|'|
¥

o n %

Stefania Druga

Fig. 10. The Code Playground programming interface is composed of 5 main components: A. Agent Evaluation, B. Coding Blocks
Library, C.Coding Area, D.Agent Response Area, E. Agent Actions Menu.

My Cognimate is...

Y
)/
m

IV

= | [gl

Helpful Not Helpful

Fig. 11. Feedback and self-evaluation pages

My Game is...

added to the micro-world when the child is ready. In our preliminary work, when I have given such micro-worlds to

children instead of the full platform, they had an easier time constructing valid programs, imagining potential behaviors

for characters, and motivating interest in training the character using Code Playground’s Al features to detect more

nuanced phrases such as back-handed compliments or ironic remarks [52]. Creative Prompts Suppose children do not

want to start by modifying an existing project but do not have a specific idea. In that case, we will present them with a

series of creative prompts inspired by free and creative writing methodologies [57]. Prompts could be obstructions (i.e.,

“This whole project is about cars. What would a house for cars look like?”), incomplete stories (i.e., “Imagine you are in

Interest-Driven Creative Programming for Youth

Share what surprised you
during this activity

Tap microphone to stop recording

==

Fig. 12. Reflection page.

~N® om s
@ ook (CRTREEERY v
I E
switch costume to nary-happy
ao E
Sorte | Nary I I sene
sow © | @ s w0 Drecton | 90

Fig. 13. A "Conversation" micro-world. Available blocks (left) and the agent controlled by the program (right).

~o

Choose model from list: good_bad +
switch costume to NaryThinking
ask and wait '
it What kind of textis this answer ? = then
switch costumeto NaryHappy +
else

switch costumeto NarySad v

17

Fig. 14. An example program assembled with the “Conversation” micro-world in Figure 13, as well as additional blocks added later.

s

This program classifies the sentiment of the text entered and changes the characters

costume” based on whether it is positive.

a forest. What do you notice around you?”), an environment inspired (i.e., “Make a game you can play with the first

object you see in your room”), meta-prompts (i.e., “Describe your creative autobiography”).

18 Stefania Druga

PARTICIPANTS USER PARTICIPANTS
P e/
‘. u \ B
= - u direct
ro.bol! interaction = = obgenz
behavior with robot of intere
b conirol a
~ —— —
Y !
CONTROL (WOZ)
INTERFACE ROBOT ((

-3

Fig. 15. Description of the PWoz method. Source Bjorling 2020 [23]

Self-Perception Game I plan to measure children’s creative self-efficacy (pre and post-programming activity) with the
three-item questionnaire developed by Tierney and Farmer [148], which included statements about perceived efficacy in
producing ideas, solving problems, and elaborating or improving upon others’ ideas. In order to make the questionnaire
child-friendly, I will present the questions in the form of a tangible game similar to the monster game used in this prior
study [54].

5.4 Data Collection

I will collect pre-and post- self-efficacy data as well as video recordings of all sessions. Children will also be enabled to
record activity feedback and in-situ [108] as part of the slider provided on the platform, and their screen activity will be
recorded, logged, and time-stamped. We will also record logs on all the support provided by wizards. Both creators and
wizards will be encouraged to speak aloud [36] during the activity. After the activity, the creators will meet the wizards,
and they will discuss the interaction. I will prompt them with reflection questions based on observed moments in the
interaction and ask them to pick three favorite moments and three frustrating moments by showing them the screen

recording of their actions.

5.5 Qualitative analysis

For the qualitative analyses, I will transcribe the videos and note comments on children’s body language and non-verbal
interactions. Once all the transcriptions are finished, I will review all the text, looking for ways of explaining the different
phases of the study. In this process, we will analyze each transcript using a combination of etic codes developed from
the CSE theoretical framework and emic codes that will emerge from the children’s reflections themselves [114, 124].
After I develop a final coding frame, I will code all the transcripts. If new codes emerge, I will document discrepancies
in the analyses until the codes are stable. I will then use this coding process to develop categories, which will be then

conceptualized into broad themes [29].

5.6 Feasibility and challenges

I estimate the most challenging part of implementing this study design will likely be accommodating for Covid
requirements. Ideally, I would like this study to occur in person, but if that is not possible, I will have to modify the

PWoZ study methodology to for an online setup.

Interest-Driven Creative Programming for Youth 19

5.7 Validity and challenges

Conducting a PWoZ study offers benefits for children. First, it provides a level of ecological validity by having the
children develop the scripts and operate the agent for the study. Their actions and choices provide the primary direction
and data for the study. Further, making both the constraints and limitations of the agent make the creative support
technology more transparent. The low fidelity nature of the Code Playground platform will be revealed to the participants
in the study providing a more realistic impression of the technological capability of the intelligent agents, which is
relatively modest. This study design provides a more authentic interaction between children and agents.

I want to conduct all of the study sessions on campus in order to maintain ecological validity. However, this might
also mean that some factors will be out of my control, such as potential changes in Covid response guidelines. In
addition, our sample is at risk of being reasonably homogeneous given the geographic location of our campus . Thus, it
is essential to consider similar studies in other locations, e.g., rural. There may also be cultural aspects (family culture
and ethnic cultures) that will influence my data and subsequent data analysis; aiming to diversify my participant sample
and collaborate with a diverse research team is essential. Finally, the children might have varying degrees of experience

with programming, which is very likely to influence the data and needs to be considered.

6 CONCLUSION

By developing and leveraging children’s creative fluency and imagination, we would allow them to not only be prepared
for the 21’st century but to inspire and advance our use of computational tools in unique and unforeseeable ways. As our
world moves, so does our art and our creativity. As researchers and designers, we need to decide how much we would
want to include intelligent technologies in our creative and learning tools and for what purposes. Engaging children as

design partners in our creative coding and future tools design will ensure a future worth building up through.

REFERENCES
[1] [n.d.]. Ph.D. Dissertation.
[2] [n.d.]. Dynamicland. https://dynamicland.org/. Accessed: 2021-5-21.
[3] [n.d.]. Froebel Gifts Kindergarten Presechool Curriculum Educational Toys. https://www.froebelgifts.com/gifts.htm. Accessed: 2021-5-22.
[4] [n.d.]. Idea Wiki. https://ideas.fandom.com/wiki/Ideas_Wiki. Accessed: 2021-5-21.
[5] [n.d.]. LEGO Mindstorms. https://www.lego.com/en-us/mindstorms.
[6] [n.d.]. Programming For Kids. https://agentsheets.com/. Accessed: 2021-5-21.
[7] [n.d.]. Programming in a museum? Creative coding for art mediation. http://ils.sont.la/post/programming-museum-creative- coding-art-mediation.

Accessed: 2021-5-21.
[8] [n.d.]. Scratch - Imagine, Program, Share. https://scratch.mit.edu/. Accessed: 2021-5-21.
[9] [n.d.]. Stuart Swann on Twitter: "Love this version of @mres ‘s Creative Learning Spiral that I stumbled across. https://t.co/bYKMzxmb9W" /
Twitter. https://twitter.com/stuartswann/status/1396022891117006852. (Accessed on 05/23/2021).
[10] Edith K Ackermann. 2005. Playthings that do things: a young kid’s incredibles!. In Proceedings of the 2005 conference on Interaction design and
children. ACM, 1-8.
[11] Safinah Ali, Tyler Moroso, and Cynthia Breazeal. 2019. Can Children Learn Creativity from a Social Robot?. In Proceedings of the 2019 on
Creativity and Cognition (San Diego, CA, USA) (Camp;C ’19). Association for Computing Machinery, New York, NY, USA, 359-368. https:
//doi.org/10.1145/3325480.3325499
Patricia Alves-Oliveira, Patricia Arriaga, Ana Paiva, and Guy Hoffman. 2017. YOLO, a Robot for Creativity: A Co-Design Study with Children. In
Proceedings of the 2017 Conference on Interaction Design and Children (Stanford, California, USA) (IDC ’17). Association for Computing Machinery,
New York, NY, USA, 423-429.
Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira Nushi, Penny Collisson, Jina Suh, Shamsi Igbal, Paul N Bennett, Kori

(12

[13

Inkpen, et al. 2019. Guidelines for human-ai interaction. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. 1-13.
[14

Morgan G Ames. 2015. Charismatic technology. In Proceedings of The Fifth Decennial Aarhus Conference on Critical Alternatives. Aarhus University
Press, 109-120.

https://dynamicland.org/
https://www.froebelgifts.com/gifts.htm
https://ideas.fandom.com/wiki/Ideas_Wiki
https://www.lego.com/en-us/mindstorms
https://agentsheets.com/
http://ils.sont.la/post/programming-museum-creative-coding-art-mediation
https://scratch.mit.edu/
https://twitter.com/stuartswann/status/1396022891117006852
https://doi.org/10.1145/3325480.3325499
https://doi.org/10.1145/3325480.3325499

Stefania Druga

Christopher Andrews. 2019. An Embodied Approach to AI Art Collaboration. In Proceedings of the 2019 on Creativity and Cognition (San Diego, CA,
USA) (C&C ’19). Association for Computing Machinery, New York, NY, USA, 156-162.

Cecilia R Aragon, Sarah S Poon, Andrés Monroy-Hernandez, and Diana Aragon. 2009. A tale of two online communities: fostering collaboration
and creativity in scientists and children. In Proceedings of the seventh ACM conference on Creativity and cognition (Berkeley, California, USA) (C&C
’09). Association for Computing Machinery, New York, NY, USA, 9-18.

A Bandura. 1977. Self-efficacy: toward a unifying theory of behavioral change. Psychol. Rev. 84, 2 (March 1977), 191-215.

Baptiste Barbot, Todd I Lubart, and Maud Besangon. 2016. “Peaks, slumps, and bumps”: Individual differences in the development of creativity in
children and adolescents. New Dir. Child Adolesc. Dev. 2016, 151 (2016), 33-45.

Simon Baron-Cohen. 1999. The evolution of a theory of mind. na.

Christoph Bartneck, Dana Kuli¢, Elizabeth Croft, and Susana Zoghbi. 2009. Measurement instruments for the anthropomorphism, animacy,
likeability, perceived intelligence, and perceived safety of robots. International journal of social robotics 1, 1 (2009), 71-81.

Benjamin B Bederson, Jesse Grosjean, and Jon Meyer. 2004. Toolkit design for interactive structured graphics. IEEE Transactions on software
engineering 30, 8 (2004), 535-546.

Ronald A Beghetto. 2006. Creative Self-Efficacy: Correlates in Middle and Secondary Students. Creat. Res. J. 18, 4 (Oct. 2006), 447-457.

Elin A Bjorling, Kyle Thomas, Emma J Rose, and Maya Cakmak. 2020. Exploring Teens as Robot Operators, Users and Witnesses in the Wild. Front
Robot AI 7 (Feb. 2020), 5.

Paulo Blikstein. 2013. Gears of our childhood: constructionist toolkits, robotics, and physical computing, past and future. In Proceedings of the 12th
international conference on interaction design and children. 173-182.

Paulo Blikstein. 2014. Digital fabrication and ‘making’in education. In FabLab. transcript-Verlag, 203-222.

Paulo Blikstein and Dennis Krannich. 2013. The makers’ movement and FabLabs in education: experiences, technologies, and research. In
Proceedings of the 12th international conference on interaction design and children. 613-616.

Benjamin S Bloom et al. 1956. Taxonomy of educational objectives. Vol. 1: Cognitive domain. New York: McKay 20 (1956), 24.

Benedict du Boulay, Tim O’Shea, and John Monk. 1981. The black box inside the glass box: presenting computing concepts to novices. Int. . Man.
Mach. Stud. 14, 3 (April 1981), 237-249.

Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology. Qualitative research in psychology 3, 2 (2006), 77-101.

K Brennan. 2015. Beyond right or wrong: Challenges of including creative design activities in the classroom. Journal of Technology and Teacher
Education (2015).

Karen Brennan, Andrés Monroy-Hernandez, and Mitchel Resnick. 2010. Making projects, making friends: online community as catalyst for
interactive media creation. New Dir. Youth Dev. 2010, 128 (2010), 75-83.

K A Brennan. 2013. Best of both worlds: Issues of structure and agency in computational creation, in and out of school. (2013).

Urie Bronfenbrenner. 1994. Ecological models of human development. Readings on the development of children 2, 1 (1994), 37-43.

Amy Bruckman. 1998. Community Support for Constructionist Learning. Comput. Support. Coop. Work 7, 1 (March 1998), 47-86.

Lindsey Jacquelyn Byom and Bilge Mutlu. 2013. Theory of mind: Mechanisms, methods, and new directions. Frontiers in human neuroscience 7
(2013), 413.

Elizabeth Charters. 2003. The use of think-aloud methods in qualitative research an introduction to think-aloud methods. Brock Education: A
Journal of Educational Research and Practice 12, 2 (2003).

Christmas Experiments Team. [n.d.]. Legends. https://christmasexperiments.com/2018/23/legends. Accessed: 2021-5-21.

Chen Chunhan, Tang Yihan, Xie Tianyi, and Druga Stefania. 2019. The Humming Box: Al-powered Tangible Music Toy for Children. In Extended
Abstracts of the Annual Symposium on Computer-Human Interaction in Play Companion Extended Abstracts. 87-95. https://doi.org/10.1145/3341215.
3356990

Anne Cloonan. 2008. Multimodality pedagogies: A multiliteracies approach. International journal of learning 15, 9 (2008), 159-168.

J Daniel Couger. 1996. Creativity & innovation in information systems organizations. Boyd & Fraser Publishing Company.

Mihaly Csikszentmihalyi, Sami Abuhamdeh, Jeanne Nakamura, et al. 1990. Flow.

M Berry David. 2008. A Contribution Towards A Grammar of Code. Fibreculture journal 13 (Jan. 2008).

N Davis, C Hsiao, K'Y Singh, B Lin, and B Magerko. 2017. Quantifying Collaboration with a Co-Creative Drawing Agent. ACM Trans. Interact.
Intell. Syst. 7, 4 (Dec. 2017), 1-25.

Nicholas Davis, Holger Winneméller, Mira Dontcheva, and Ellen Yi-Luen Do. 2013. Toward a cognitive theory of creativity support. In Proceedings
of the 9th ACM Conference on Creativity & Cognition (Sydney, Australia) (C&C ’13). Association for Computing Machinery, New York, NY, USA,
13-22.

Dominik Dellermann, Adrian Calma, Nikolaus Lipusch, Thorsten Weber, Sascha Weigel, and Philipp Ebel. 2019. The future of human-AI
collaboration: a taxonomy of design knowledge for hybrid intelligence systems. In Proceedings of the 52nd Hawaii International Conference on
System Sciences.

Manuj Dhariwal and Shruti Dhariwal. 2020. Let’s Chance: Playful Probabilistic Programming for Children. In Extended Abstracts of the 2020 CHI
Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI EA "20). Association for Computing Machinery, New York, NY, USA,
1-7.

https://christmasexperiments.com/2018/23/legends
https://doi.org/10.1145/3341215.3356990
https://doi.org/10.1145/3341215.3356990

Interest-Driven Creative Programming for Youth 21

(47]

(48
(49]

=
=2

3
N

Paul E Dickson, Neil C C Brown, and Brett A Becker. 2020. Engage Against the Machine: Rise of the Notional Machines as Effective Pedagogical
Devices. In Proceedings of the 2020 ACM Conference on Innovation and Technology in Computer Science Education (Trondheim, Norway) (ITiCSE ’20).
Association for Computing Machinery, New York, NY, USA, 159-165.

Betsy DiSalvo and Amy Bruckman. 2011. From interests to values. Commun. ACM 54, 8 (Aug. 2011), 27-29.

Betsy DiSalvo, Mark Guzdial, Charles Meadows, Ken Perry, Tom McKlin, and Amy Bruckman. 2013. Workifying games: successfully engaging
african american gamers with computer science. In Proceeding of the 44th ACM technical symposium on Computer science education (Denver,
Colorado, USA) (SIGCSE °13). Association for Computing Machinery, New York, NY, USA, 317-322.

Andrea A DiSessa. 2001. Changing minds: Computers, learning, and literacy. Mit Press.

Steven P Dow, Alana Glassco, Jonathan Kass, Melissa Schwarz, Daniel L Schwartz, and Scott R Klemmer. 2011. Parallel prototyping leads to better
design results, more divergence, and increased self-efficacy. ACM Trans. Comput.-Hum. Interact. 17, 4 (Dec. 2011), 1-24.

Stefania Druga. 2018. Growing up with AI: Cognimates: from coding to teaching machines. Ph.D. Dissertation. Massachusetts Institute of Technology.
Stefania Druga and Amy J. Ko. 2021. How do children’s perceptions of machine intelligence change when training and coding smart programs?
Interaction Design for Children ACM (2021). https://doi.org/10.1145/3459990.3460712

Stefania Druga, Sarah T Vu, Eesh Likhith, and Tammy Qiu. 2019. Inclusive Al literacy for kids around the world. In Proceedings of FabLearn 2019.
ACM, 104-111.

Allison Druin. 2002. The role of children in the design of new technology. Behaviour and information technology 21, 1 (2002), 1-25.

Michael Eagle and Tiffany Barnes. 2008. Wu’s castle: teaching arrays and loops in a game. In Proceedings of the 13th annual conference on Innovation
and technology in computer science education (Madrid, Spain) (ITiCSE *08). Association for Computing Machinery, New York, NY, USA, 245-249.
Steven Earnshaw. 2007. The handbook of creative writing. Edinburgh University Press.

Ron Eglash, Juan E Gilbert, and Ellen Foster. 2013. Toward culturally responsive computing education. Commun. ACM 56, 7 (July 2013), 33-36.
Mary Fawcett and Penny Hay. 2004. 5x5x5 = Creativity in the Early Years. The international journal of art & design education 23, 3 (Oct. 2004),
234-245.

Diana Franklin, David Weintrop, Jennifer Palmer, Merijke Coenraad, Melissa Cobian, Kristan Beck, Andrew Rasmussen, Sue Krause, Max White,
Marco Anaya, and Zachary Crenshaw. 2020. Scratch Encore: The Design and Pilot of a Culturally-Relevant Intermediate Scratch Curriculum. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Education (Portland, OR, USA) (SIGCSE °20). Association for Computing
Machinery, New York, NY, USA, 794-800.

Paulo Freire. 2013. Pedagogy of the oppressed. Routledge.

Jonas Frich, Lindsay MacDonald Vermeulen, Christian Remy, Michael Mose Biskjaer, and Peter Dalsgaard. 2019. Mapping the Landscape of
Creativity Support Tools in HCI. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI '19,
Paper 389). Association for Computing Machinery, New York, NY, USA, 1-18.

Howard Gardner and Katie Davis. 2013. 6. Acts (And Apps) of Imagination Among Today’s Youth. In The App Generation. Yale University Press,
120-154.

John Taylor Gatto. 2003. The underground history of American education. Oxford Village Press New York, NY.

Clifford Geertz. 2008. Thick description: Toward an interpretive theory of culture. In The cultural geography reader. Routledge, 41-51.

David J Gilmore. 1991. Models of debugging. Acta Psychol. 78, 1 (Dec. 1991), 151-172.

Rachel Gockley, Allison Bruce, Jodi Forlizzi, Marek Michalowski, Anne Mundell, Stephanie Rosenthal, Brennan Sellner, Reid Simmons, Kevin
Snipes, Alan C Schultz, et al. 2005. Designing robots for long-term social interaction. In 2005 IEEE/RS7 International Conference on Intelligent Robots
and Systems. IEEE, 1338-1343.

Saul Greenberg. 2004. Collaborative physical user interfaces. (2004).

J P Guilford. 1967. Creativity: Yesterday, today and tomorrow. j. Creat. Behav. 1, 1 (Jan. 1967), 3-14.

Philip] Guo. 2015. Codeopticon: Real-Time, One-To-Many Human Tutoring for Computer Programming. In Proceedings of the 28th Annual ACM
Symposium on User Interface Software & Technology (Charlotte, NC, USA) (UIST ’15). Association for Computing Machinery, New York, NY, USA,
599-608.

Mark Guzdial. 1994. Software-Realized Scaffolding to Facilitate Programming for Science Learning. Interactive Learning Environments 4, 1 (Jan.
1994), 001-044.

Mark Guzdial. 2015. Learner-Centered Design of Computing Education: Research on Computing for Everyone. Synthesis Lectures on Human-Centered
Informatics 8, 6 (Nov. 2015), 1-165.

David Hammer. 1996. Misconceptions or p-prims: How may alternative perspectives of cognitive structure influence instructional perceptions and
intentions. The journal of the learning sciences 5, 2 (1996), 97-127.

Idit Harel. 1990. Children as software designers: A constructionist approach for learning mathematics. Journal of Mathematical Behavior 9, 1
(1990), 3-93.

Cindy E Hmelo and Mark Guzdial. 1996. Of black and glass boxes: Scaffolding for doing and learning. (1996).

Glynda A Hull and Mark Evan Nelson. 2005. Locating the semiotic power of multimodality. Written communication 22, 2 (2005), 224-261.

Ivan Illich, Ivan Illich, Ivan Illich, and Ivan Illich. 1971. Deschooling society.

Yasmin Kafai, Deborah Fields, and Kristin Searle. 2014. Electronic textiles as disruptive designs: Supporting and challenging maker activities in
schools. Harvard Educational Review 84, 4 (2014), 532-556.

https://doi.org/10.1145/3459990.3460712

22

RS
A

(82

(83]

(84

% "w ‘oo
)

Stefania Druga

Yasmin B Kafai. 2016. From computational thinking to computational participation in K-12 education. Commun. ACM 59, 8 (2016), 26-27.
Yasmin B Kafai and Quinn Burke. 2014. Connected code: Why children need to learn programming. Mit Press.

Yasmin B Kafai and Cynthia Carter Ching. 2001. Affordances of collaborative software design planning for elementary students’ science talk. The
Journal of the Learning Sciences 10, 3 (2001), 323-363.

Yasmin B Kafai, Eunkyoung Lee, Kristin Searle, Deborah Fields, Eliot Kaplan, and Debora Lui. 2014. A crafts-oriented approach to computing in
high school: Introducing computational concepts, practices, and perspectives with electronic textiles. ACM Transactions on Computing Education
(TOCE) 14, 1 (2014), 1-20.

Pegah Karimi, Kazjon Grace, Mary Lou Maher, and Nicholas Davis. 2018. Evaluating Creativity in Computational Co-Creative Systems. (July 2018).
arXiv:1807.09886 [cs.Al]

Pegah Karimi, Jeba Rezwana, Safat Siddiqui, Mary Lou Maher, and Nasrin Dehbozorgi. 2020. Creative sketching partner: an analysis of human-Al
co-creativity. In Proceedings of the 25th International Conference on Intelligent User Interfaces (Cagliari, Italy) (IUI '20). Association for Computing
Machinery, New York, NY, USA, 221-230.

Maciej Karwowski and James C Kaufman. 2017. The Creative Self: Effect of Beliefs, Self-Efficacy, Mindset, and Identity. Academic Press.

James C Kaufman and Ronald A Beghetto. 2009. Beyond Big and Little: The Four C Model of Creativity. Rev. Gen. Psychol. 13, 1 (March 2009), 1-12.
Annie Kelly. 2019. Code Against the Machine: Design-based Research Towards More Equitable Computational Tools for Performing Artists. In
Proceedings of the 2019 ACM Conference on International Computing Education Research (Toronto ON, Canada) (ICER ’19). Association for Computing
Machinery, New York, NY, USA, 337-338.

Joy Kim, Maneesh Agrawala, and Michael S Bernstein. 2017. Mosaic: Designing Online Creative Communities for Sharing Works-in-Progress.
In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing (Portland, Oregon, USA) (CSCW ’17).
Association for Computing Machinery, New York, NY, USA, 246-258.

A Ko and B Myers. 2008. Debugging reinvented. 2008 ACM/IEEE 30th International Conference (2008).

Amy Ko and Brad Myers. 2008. Debugging reinvented. In 2008 ACM/IEEE 30th International Conference on Software Engineering. IEEE, 301-310.
Amy J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett, Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman,
Brad Myers, et al. 2011. The state of the art in end-user software engineering. ACM Computing Surveys (CSUR) 43, 3 (2011), 1-44.

A J Ko, B A Myers, and H H Aung. 2004. Six learning barriers in end-user programming systems. Proc. IEEE Symp. Vis. Anal. Sci. Technol. (2004).
Kyu Han Koh, Ashok Basawapatna, Vicki Bennett, and Alexander Repenning. 2010. Towards the Automatic Recognition of Computational Thinking
for Adaptive Visual Language Learning. In 2010 IEEE Symposium on Visual Languages and Human-Centric Computing. ieeexplore.ieee.org, 59-66.
Arie W Kruglanski and Anna Sheveland. 2012. Thinkers’ personalities: On individual differences in the processes of sense making. The SAGE
handbook of social cognition (2012), 474-493.

Jaron Lanier. 2010. You are not a gadget: A manifesto. Vintage.

Lotta C Larson and Teresa Northern Miller. 2011. 21st century skills: Prepare students for the future. Kappa Delta Pi Record 47, 3 (2011), 121-123.
Jean Lave, Etienne Wenger, et al. 1991. Situated learning: Legitimate peripheral participation. Cambridge university press.

Michael J Lee. 2020. Auto-generated game levels increase novice programmers’ engagement. . Comput. Sci. Coll. 36, 3 (Oct. 2020), 70-79.
Michael J Lee, Faezeh Bahmani, Irwin Kwan, Jilian LaFerte, Polina Charters, Amber Horvath, Fanny Luor, Jill Cao, Catherine Law, Michael
Beswetherick, et al. 2014. Principles of a debugging-first puzzle game for computing education. In 2014 IEEE symposium on visual languages and
human-centric computing (VL/HCC). IEEE, 57-64.

Michael J Lee, Faezeh Bahmani, Irwin Kwan, Jilian LaFerte, Polina Charters, Amber Horvath, Fanny Luor, Jill Cao, Catherine Law, Michael
Beswetherick, Sheridan Long, Margaret Burnett, and Amy J Ko. 2014. Principles of a debugging-first puzzle game for computing education. In 2014
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). 57-64.

Michael J Lee and Joseph Chiou. 2020. Animated hints help novices complete more levels in an educational programming game. J. Comput. Sci.
Coll. 35, 8 (April 2020), 136-145.

Michael J Lee and Amy J Ko. 2015. Comparing the effectiveness of online learning approaches on CS1 learning outcomes. In Proceedings of the
Eleventh Annual International Conference on International Computing Education Research. ACM, 237-246.

Yong Jae Lee, C Lawrence Zitnick, and Michael F Cohen. 2011. ShadowDraw: real-time user guidance for freehand drawing. ACM Trans. Graph. 30,
4 (July 2011), 1-10.

Yong Jae Lee, C Lawrence Zitnick, and Michael F Cohen. 2011. Shadowdraw: real-time user guidance for freehand drawing. ACM Transactions on
Graphics (TOG) 30, 4 (2011), 1-10.

Anais Leroy, Margarida Romero, and Laura Cassone. 2021. Interactivity and materiality matter in creativity: educational robotics for the assessment
of divergent thinking. Interactive Learning Environments (Jan. 2021), 1-12.

Stanley Letovsky. 1987. Cognitive processes in program comprehension. Journal of Systems and software 7, 4 (1987), 325-339.

Raymond Lister. 2016. Toward a Developmental Epistemology of Computer Programming. In Proceedings of the 11th Workshop in Primary and
Secondary Computing Education (Miinster, Germany) (WiPSCE ’16). Association for Computing Machinery, New York, NY, USA, 5-16.

Dastyni Loksa, Benjamin Xie, Harrison Kwik, and Amy J Ko. 2020. Investigating Novices’ In Situ Reflections on Their Programming Process. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Education (Portland, OR, USA) (SIGCSE °20). Association for Computing
Machinery, New York, NY, USA, 149-155.

https://arxiv.org/abs/1807.09886

Interest-Driven Creative Programming for Youth 23

[109]

=
@
Py

[132

Duri Long and Brian Magerko. 2020. What is AI Literacy? Competencies and Design Considerations. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems. 1-16.

Pedro Lucas and Carlos Martinho. 2017. Stay Awhile and Listen to 3Buddy, a Co-creative Level Design Support Tool. In ICCC. computationalcre-
ativity.net, 205-212.

Carmen Luke. 2003. Pedagogy, connectivity, multimodality, and interdisciplinarity. Reading research quarterly 38, 3 (2003), 397-403.

John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond. 2010. The scratch programming language and environment.
ACM Transactions on Computing Education (TOCE) 10, 4 (2010), 1-15.

Michael Michalko. 2006. Thinkertoys: A handbook of creative-thinking techniques. Random House Digital, Inc.

Matthew B Miles and A Michael Huberman. 1984. Drawing valid meaning from qualitative data: Toward a shared craft. Educational researcher 13,
5 (1984), 20-30.

Brad A Myers, Richard G McDaniel, Robert C Miller, Alan S Ferrency, Andrew Faulring, Bruce D Kyle, Andrew Mickish, Alex Klimovitski, and
Patrick Doane. 1997. The Amulet environment: New models for effective user interface software development. IEEE Transactions on software
engineering 23, 6 (1997), 347-365.

Ulric Neisser. 2014. Cognitive psychology: Classic edition. Psychology Press.

Greg L Nelson, Andrew Hu, Benjamin Xie, and Amy J Ko. 2019. Towards validity for a formative assessment for language-specific program tracing
skills. In Proceedings of the 19th Koli Calling International Conference on Computing Education Research. 1-10.

Greg L Nelson, Benjamin Xie, and Andrew J Ko. 2017. Comprehension first: evaluating a novel pedagogy and tutoring system for program tracing
in CS1. In Proceedings of the 2017 ACM Conference on International Computing Education Research. 2-11.

Daniel Ness and Stephen J Farenga. 2016. Blocks, bricks, and planks: Relationships between affordance and visuo-spatial constructive play objects.
Am. J. Play 8, 2 (2016), 201-227.

Seymour Papert. 1980. Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.

Seymour Papert. 1993. The children’s machine: Rethinking school in the age of the computer. ERIC.

Seymour Papert and Idit Harel. 1991. Situating constructionism. Constructionism 36, 2 (1991), 1-11.

Hae Won Park, Rinat B Rosenberg-Kima, Maor Rosenberg, Goren Gordon, and Cynthia Breazeal. 2017. Growing Growth Mindset with a Social
Robot Peer.. In HRI. 137-145.

Michael Quinn Patton. 1990. Qualitative evaluation and research methods. SAGE Publications, inc.

William Christopher Payne, Yoav Bergner, Mary Etta West, Carlie Charp, R Benjamin Benjamin Shapiro, Danielle Albers Szafir, Edd V Taylor,
and Kayla DesPortes. 2021. danceON: Culturally Responsive Creative Computing. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems (Yokohama, Japan) (CHI °21, Article 96). Association for Computing Machinery, New York, NY, USA, 1-16.

Michael A Peters, Simon Marginson, and Peter Murphy. 2009. Creativity and the global knowledge economy. Peter Lang.

Mike Petrich, Karen Wilkinson, and Bronwyn Bevan. 2013. It looks like fun, but are they learning? In Design, make, play. Routledge, 68-88.
Jean Piaget. 1951. The child’s conception of the world. Number 213. Rowman & Littlefield.

Linda Pound. 2017. How Children Learn-Book 1: From Montessori to Vygosky-Educational Theories and Approaches Made Easy. Vol. 1. Andrews UK
Limited.

Lauren B Resnick, Merrilee Salmon, Colleen M Zeitz, Sheila Haley Wathen, and Mark Holowchak. 1993. Reasoning in conversation. Cognition and
instruction 11, 3-4 (1993), 347-364.

Mitchel Resnick. [n.d.]. Give p’s a chance: Projects, peers, passion, play. https://web.media.mit.edu/~mres/papers/constructionism-2014.pdf.
Accessed: 2021-5-19.

Mitchel Resnick. 2007. All Ireally need to know (about creative thinking) I learned (by studying how children learn) in kindergarten. In Proceedings
of the 6th ACM SIGCHI Conference on Creativity & Cognition. 1-6.

Mitchel Resnick. 2008. Sowing the seeds for a more creative society. Learning & Leading with Technology 35, 4 (2008), 18-22.

Mitchel Resnick, Robbie Berg, and Michael Eisenberg. 2000. Beyond black boxes: Bringing transparency and aesthetics back to scientific investigation.
The Journal of the Learning Sciences 9, 1 (2000), 7-30.

Mitchel Resnick, Amy Bruckman, and Fred Martin. 1996. Pianos not stereos: Creating computational construction kits. (1996).

Mitchel Resnick and Ken Robinson. 2017. Lifelong Kindergarten: Cultivating Creativity Through Projects, Passion, Peers, and Play. MIT Press.
Mitchel Resnick and Eric Rosenbaum. 2013. Designing for tinkerability. Design, make, play: Growing the next generation of STEM innovators (2013),
163-181.

Barbara Rogoff, Behnosh Najafi, and Rebeca Mejia-Arauz. 2014. Constellations of cultural practices across generations: Indigenous American
heritage and learning by observing and pitching in. Human Development 57, 2-3 (2014), 82-95.

Marlene Scardamalia and Carl Bereiter. 1994. Computer support for knowledge-building communities. The journal of the learning sciences 3, 3
(1994), 265-283.

Donald A Schon. 1983. Reflective practitioner. Vol. 5126. Basic books.

David Williamson Shaffer and Mitchel Resnick. 1999. “ Thick” authenticity: New media and authentic learning. Journal of interactive learning
research 10, 2 (1999), 195-216.

Ben Shneiderman. 2002. Creativity support tools. Commun. ACM 45, 10 (2002), 116-120.

Ben Shneiderman. 2007. Creativity support tools: accelerating discovery and innovation. Commun. ACM 50, 12 (Dec. 2007), 20-32.

https://web.media.mit.edu/~mres/papers/constructionism-2014.pdf

24

[146]

[147]

[148]

[155]

Stefania Druga

Charles Percy Snow. 2012. The two cultures. Cambridge University Press.

Amber Solomon, Vanessa Oguamanam, Mark Guzdial, and Betsy DiSalvo. 2019. Making CS Learning Visible: Case Studies on How Visibility of
Student Work Supports a Community of Learners in CS Classrooms. In Proceedings of the 2019 ACM Conference on Innovation and Technology in
Computer Science Education (Aberdeen, Scotland Uk) (ITiCSE ’19). Association for Computing Machinery, New York, NY, USA, 161-167.
Woonhee Sung, Junghyun Ahn, and John B Black. 2017. Introducing computational thinking to young learners: Practicing computational
perspectives through embodiment in mathematics education. Technology, Knowledge and Learning 22, 3 (2017), 443-463.

L M Terman and M A Merrill. 1937. Measuring intelligence: A guide to the administration of the new revised Stanford-Binet tests of intelligence.
461 (1937).

Pamela Tierney and Steven M Farmer. 2002. Creative Self-Efficacy: Its Potential Antecedents and Relationship to Creative Performance. Acad.
Manage. J. 45, 6 (2002), 1137-1148.

E Paul Torrance. 1981. Creative teaching makes a difference. Creativity: Its educational implications (1981), 99-108.

Moran Tsur and Natalie Rusk. 2018. Scratch Microworlds: Designing Project-Based Introductions to Coding. In Proceedings of the 49th ACM
Technical Symposium on Computer Science Education (Baltimore, Maryland, USA) (SIGCSE ’18). Association for Computing Machinery, New York,
NY, USA, 894-899.

Sherry Turkle. 2011. Evocative Objects: Things We Think With. MIT Press.

Sherry Turkle and Seymour Papert. 1992. Epistemological pluralism and the revaluation of the concrete. Journal of Mathematical Behavior 11, 1
(1992), 3-33.

Lev Semenovich Vygotsky. 2004. Imagination and Creativity in Childhood. Journal of Russian & East European Psychology 42, 1 (Jan. 2004), 7-97.
Qiaosi Wang, Koustuv Saha, Eric Gregori, David Joyner, and Ashok Goel. 2021. Towards Mutual Theory of Mind in Human-AI Interaction: How
Language Reflects What Students Perceive About a Virtual Teaching Assistant. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems (Yokohama, Japan) (CHI '21, Article 384). Association for Computing Machinery, New York, NY, USA, 1-14.

Chao Zhang, Cheng Yao, Jianhui Liu, Zili Zhou, Weilin Zhang, Lijuan Liu, Fangtian Ying, Yijun Zhao, and Guanyun Wang. 2021. StoryDrawer: A
Co-Creative Agent Supporting Children’s Storytelling through Collaborative Drawing. In Extended Abstracts of the 2021 CHI Conference on Human
Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, 1-6.

	1 Creative Thinking with and for youth: past, present and future
	2 Beyond Creativity Support: Expression fluency
	2.1 Cross-cutting Open Questions and Future Directions
	2.2 Looking forward: a story about CSTs in the wild

	3 Cognitivist vs Constructionist Approaches to Youth Programming
	3.1 Papert’s constructionism v.s. Piaget’s constructivism
	3.2 Cognitivist examples
	3.3 Constructionist examples
	3.4 Best of both worlds?

	4 Design guidelines
	5 Proposed Study Design: PWoZ with Code playground
	5.1 Theoretical framing: Creative self-efficacy & Theory of Mind
	5.2 Code Playground Platform
	5.3 Proposed Study Procedure
	5.4 Data Collection
	5.5 Qualitative analysis
	5.6 Feasibility and challenges
	5.7 Validity and challenges

	6 Conclusion
	References

